進階搜尋


 
系統識別號 U0026-2801201911141900
論文名稱(中文) 應用SCHISM與GNOME預報臺灣近岸海域油污的宿命與傳輸
論文名稱(英文) Forecasting of fate and transport of oil spills in Taiwan’s coastal waters using SCHISM and GNOME
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 1
出版年 108
研究生(中文) 邱啓敏
研究生(英文) Chi-Min Chiu
學號 N88011118
學位類別 博士
語文別 英文
論文頁數 98頁
口試委員 指導教授-黃清哲
口試委員-蕭士俊
口試委員-董東璟
口試委員-莊士賢
口試委員-邱永芳
口試委員-蔡加正
口試委員-謝志敏
中文關鍵字 油污  SCHISM  GNOME  X波段雷達  德祥臺北  風化過程  宿命  漂移軌跡  擴散範圍  情境模擬 
英文關鍵字 Oil spill  SCHISM  GNOME  X-band radar  Container ship T. S. Taipei  Weathering  Fate  Oil-spill trajectories  Oil-spill diffusion range  Scenario simulation 
學科別分類
中文摘要 近岸海域的油污事件會對海洋生態與經濟活動造成嚴重之衝擊,若能掌握油污的發生區域與移動特徵,將能更有效地進行油污災情控制與清理工作,以減少對海洋環境的影響。本研究採用二套油污擴散模式,分別為SCHISM及GNOME,預測油污漂移軌跡與擴散範圍,評估其在臺灣四周海域的適用性。首先,本研究建立一套油污漂移軌跡的預報系統,此系統運作方式分為二階段。第一階段以X-Band雷達在溢油事件發生時即時偵測油污在海面上的擴散與移動方向。第二階段則收集或以數值模式模擬海氣象資料,並利用SCHISM模式預測溢油事件發生位置附近海域的水位與海流,應用Lagrangian particle-tracking方法模擬油污漂移軌跡的演變情況。本研究以2016年新北市石門外海「德翔臺北」漏油事件為例,應用SCHISM模擬未來1天及34天油污漂移軌跡的演變,二者結果皆與環保署現場實際調查結果相符,證明本研究未來可用於於臺灣海域油污漂移軌跡的的模擬。
另外,在2010年墨西哥灣漏油事故 (深水地平線漏油事件) 發生時,美國NOAA應用GNOME進行模擬海面上油污擴散範圍及漂移軌跡。有鑑於此,本研究也採用GNOME油污擴散模式,結合SCHISM模式預測的水位與海流,情境模擬高雄永安天然氣接收廠與高雄海域若發生溢油事件,分別探討四季油污漂移軌跡、擴散範圍、以及風化結果,提供國內相關權責單位擬訂緊急應變策略與救災能量的配置,以及緊急應變作業之重要參考依據。
英文摘要 Coastal oil-spill accidents have a hugely detrimental impact on marine ecosystems and economic activities. Understanding of oil-spill location and movement might improve the effectiveness of coastal oil spill control and clean-up techniques, thus minimizing the effect of the spilled oil on coastal marine environments. This study applied two oil-spill models, namely the SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) and the GNOME (General National Oceanic and Atmospheric Administration Operational Modeling Environment), to predict the fate and transport of spilled oil near the Shimen and Kaohsiung coasts of Taiwan. In addition, the applicability of these two models to the waters around Taiwan was evaluated.
In the first part of this study, we propose a two-step strategy for tracking oil-spill trajectories. First, an X-band radar is established to monitor oil spills. Accordingly, X-band radar was applied to identify the oil slicks on the sea surface. Second, we apply the SCHISM to determine the water surface elevations and currents at the event site and obtain the trajectories of the oil slicks using a Lagrangian particle-tracking method incorporated in the SCHISM. An oil-spill event caused by the container ship T. S. Taipei is used as a case study for testing the capability of the proposed oil-tracking strategy. The SCHISM simulation results for the fouled coastline obtained using the wind data from a nearby data buoy agree quite well with those obtained from field observations. However, the predicted fouled coastline based on the forecasted wind data is unsatisfactory. The reasons for the unsatisfactory prediction are discussed and revealed.
When the Gulf of Mexico (Deepwater Horizon) oil spill occurred in 2010, the GNOME was used to forecast the fate of spilled oil. Therefore, the second part of this study also applied the GNOME, with inputs of SCHISM-predicted sea levels and ocean currents, to simulate hypothetical oil-spill scenarios in Kaohsiung’s waters in all seasons. The simulated results demonstrated that the GNOME can predict the drifting trajectory and diffusion range of the spilled oils. These information can be used by the related authorities to allocate the response resources and to make mitigation plans for oil spills.
論文目次 摘 要 I
ABSTRACT III
誌 謝 V
TABLE OF CONTENTS VII
LIST OF TABLES XI
LIST OF FIGURES XIII
NOTATION XIX
ABBREVIATION XXI
CHAPTER 1 INTRODUCTION 1
1-1 Motivation 1
1-2 Literature review 2
1-3 Objectives and overview of the dissertation 6
CHAPTER 2 NUMERICAL MODELING 9
2-1 Hydrodynamic model 9
2-2 Oil spill modeling 13
2-2-1 Lagrangian particle tracking in SCHISM 13
2-2-2 GNOME 15
CHAPTER 3 REMOTE SENSING OF OIL SPILL USING LAND-BASED X-BAND RADAR 19
CHAPTER 4 A CASE STUDY OF OIL-SPILL EVENT USING SCHISM 25
4-1 Oil spill forecasting based on the SCHISM and X-band radar 25
4-2 T. S. Taipei oil spill 27
4-3 Prediction and verification of water level and current 29
4-4 Wind data 37
4-5 Simulation and verification of oil-spill trajectories 39
4-6 Forecasting of oil-spill trajectories 46
CHAPTER 5 SCENARIO SIMULATION AND THE PREDICTION OF OIL SPILLS IN KAOHSIUNG COAST USING GNOME 53
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 83
6-1 Conclusions 83
6-2 Recommendations for future research 85
REFERENCES 87
參考文獻 1. Aghajanloo, K., Pirooz, M. D., and Namin, M. M. (2013). Numerical simulation of oil spill behavior in the Persian Gulf. International Journal of Environmental Research, Vol. 7(1), pp. 81-96.
2. Alpers, W. and Hühnerfuss, H. (1988). Radar signatures of oil films floating on the sea surface and the Marangoni effect. J. Geophys. Res., Oceans, Vol. 93 (C4), pp. 3642-3648.
3. Azevedo, A., Oliveira, A., Fortunato, A.B., Zhang, J., and Baptista, A.M. (2014). A cross-scale numerical modeling system for management support of oil spill accidents. Mar. Pollut. Bull., Vol. 80, pp. 132-147.
4. Beegle-Krause, C. (2001). General NOAA oil modeling environment (GNOME): a new spill trajectory model. In: IOSC 2001 Proceedings, Tampa, FL 2, pp. 865-871.
5. Beegle-Krause, C.J., and O’Connor, C. (2005). GNOME Data Formats and Associated Example Data Files. Tech. Rep., NOAA Office of Response and Restoration, Emergency Response Division, Seattle, 49 pp.
6. Beegle‐Krause, C. J., and Lehr, W. J. (2014). Oceanographic and Meteorological Effects on Spilled Oil. Handbook of Oil Spill Science and Technology, pp. 301-310.
7. Beegle-Krause, C. J. (2018). Challenges and Mysteries in Oil Spill Fate and Transport Modeling. In Oil Spill Environmental Forensics Case Studies, pp. 187-199.
8. Chen, S.H., and Dudhia, J. (2000). Annual Report: WRF Physics. Air Force Weather Agency, Boulder, 38 pp.
9. Chen, H.Z., Li, D.M., and Li, X. (2007). Mathetical modeling of oil spill on the sea and application of the modeling in Daya Bay. J. Hydrodyn., Ser. B, Vol. 19(3), pp. 282-291.
10. Cheng, Y., Li, X., Xu, Q., Garcia-Pineda, O., Andersen, O. B., and Pichel, W.G. (2011). SAR observation and model tracking of an oil spill event in coastal waters. Mar. Pollut. Bull., Vol. 62(2), pp. 350-363.
11. Clift, R., Grace, J.R., and Weber, M.E. (1978). Bubbles, drops, and particles. Academic, New York.
12. Crone, T.J., and Tolstoy, M. (2010). Magnitude of the 2010 Gulf of Mexico oil leak. Science, Vol. 330, pp. 634.
13. Delvigne, G., and Sweeney, C.E. (1988). Narural dispersion of oil. Oil Chem. Pollut., Vol. 4, pp. 281-310.
14. Diop, S., Barusseau, J.P., and Descamps, C. (Eds.). (2014). The Land/Ocean Interactions in the Coastal Zone of West and Central Africa. Springer.
15. Duran, R., Romeo, L., Whiting, J., Vielma, J., Rose, K., Bunn, A., and Bauer, J. (2018). Simulation of the 2003 foss barge-point wells oil spill: A comparison between BLOSOM and GNOME oil spill models. Journal of Marine Science and Engineering, Vol. 6(3), 104; https://doi.org/10.3390/jmse6030104.
16. EPA Taiwan (2016). http://enews.epa.gov.tw/enews/fact_index.asp (in Chinese).
17. Fay, J.A. (1969). The spread of oil slicks on a calm sea. In: Hoult, D.P. (eds) Oil on the Sea. Ocean Technology, Springer, Boston, MA.
18. Fernando, H.J. (2012). Handbook of Environmental Fluid Dynamics, Volume Two: Systems, Pollution, Modeling, and Measurements. CRC press.
19. Fingas, M.F. (1996). The evaporation of crude oil and petroleum products. PhD Dissertation. McGill University, Montreal, Canada, pp. 181.
20. Fingas, M.F. (2011). Oil Spill Science and Technology, Prevention, Response, and Cleanup, Elsevier, Boston, MA (ISBN: 978-1-85617-943-0).
21. Fingas, M.F. (2014a). Handbook of oil spill science and technology. John Wiley & Sons.
22. Fingas, M.F. (2014b). Water-in-oil emulsions: formation and prediction. J. of Petroleum Science Research, Vol. 3 (1), pp. 38-49.
23. Fingas, M.F., and Brown, C.E. (1997). Review of oil spill remote sensing. Spill Science & Technology Bulletin, Vol. 4(4), pp. 199-208.
24. Fingas, M.F., and Brown, C.E. (2014). Review of oil spill remote sensing. Mar. Pollut. Bull., Vol. 83(1), pp. 9-23.
25. Fingas, M.F., and Fieldhouse, B. (2003). Studies of the formation of water-in-oil emulsions. Mar. Pollut. Bull., Vol. 47, pp. 369-396.
26. Fingas, M.F., and Fieldhouse, B. (2011). Studies on water-in-oil products from crude oils and petroleum products. Mar. Pollut. Bull., Vol. 64, pp. 272-283.
27. Forget, P., and Brochu, P. (1996). Slicks, waves and fronts observed in sea coastal area by an X-band airborne synthetic aperture radar. Remote Sens. Environ., Vol. 57, pp. 1-12.
28. Fingas, M., and Brown, C. (2018). A review of oil spill remote sensing. Sensors 2018, Vol. 18(19), pp. 1-18.
29. Frasier, S.J., Liu, Y., and McIntosh, R.E. (1998). Space-time properties of radar sea spikes and their relation to wind and wave conditions. J. Geophys. Res., Oceans, Vol. 103, pp. 18745-18757.
30. Fredj, E., Kohut, J., Roarty, H., and Lu, J.W. (2017). Evaluation of the HF-Radar network system around Taiwan using normalized cumulative Lagrangian separation. In EGU General Assembly Conference Abstracts, Vol. 19, pp. 19137.
31. French-McCay, D.P. (2003). Development and application of damage assessment modeling: Example assessment for the North Cape oil spill. Mar. Poll. Bull., Vol. 47, pp. 341-359.
32. French-McCay, D.P. (2004). Oil spill impact modeling: Development and validation. Environ. Toxicol. Chem., Vol. 23 (10), pp. 2441-2456.
33. French-McCay, D.P., Jayko, K., Li, Z., Horn, M., Kim, Y., Isaji, T., Crowley, D., Spaulding, M., Decker, L., Turner, C., Zamorski, S., Fontenault, J., Shmookler, R., and Rowe, J.J. (2015). Technical Reports for Deepwater Horizon Water Column Injury Assessment – WC_TR14: Modeling Oil Fate and Exposure Concentrations in the Deepwater Plume and Cone of rising Oil Resulting From the Deepwater Horizon Oil Spill. DWH NRDA Water Column Technical Working Group Report. Prepared for National Oceanic and Atmospheric Aministration by RPS ASA, South Kingstown, RI, USA. September 29, 2015. Administrative Record no. DWH-AR0285776.pdf.
34. Freudenburg, W.R., and Gramling, R. (2011). Blowout in the Gulf – The BP Oil Spill Disaster and the Future of Energy in America, Chapter 9: Cleaning Up. The MIT Press, Cambridge, Massachusetts.
35. Gangeskar, R. (2002). Ocean current estimated from X-band radar sea surface images. IEEE Trans. Geosci. Remote Sens., Vol. 40, pp. 783-792.
36. Gundlach, E.R., Kana, T.W., and Boehm, P.D. (1985). Modeling spilled oil partitioning in nearshore and surf zone areas. 1985 Int. Oil Spill Conf., pp. 379-383.
37. Guo, W.J., and Wang, Y.X. (2009). A numerical oil spill model based on a hybrid method. Mar. Pollut. Bull., Vol. 58(5), pp. 726-734.
38. Haney, R.L. (1991). On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanog., Vol. 21, pp. 610-619.
39. Herbers, T.H.C., Jessen, P.F., Janssen, T.T., Colbert, D.B., and MacMahan, J.H. (2012). Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Ocean. Tech., Vol. 29, pp. 944-959.
40. Hessner, K., Reichert, K., Borge, J., Stevens, C., and Smith, M. (2014). High-resolution X-band radar measurements of currents, bathymetry and sea state in highly inhomogeneous coastal areas. Ocean Dynam., Vol. 64, pp. 989-998.
41. Hsiao, L. F., Chen, D. S., Kuo, Y. H., Guo, Y. R., Yeh, T. C., Hong, J. S., Fong, C. T., and Lee, C. S. (2012). Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Weather and Forecasting, Vol. 27(5), pp. 1249-1263.
42. Huang, H.Y., Chang, C.M., and Chang, C.H. (2016). Impact assessment of shoreline oiling caused by stranded ships – Case study of the container ship T.S. Taipei. 2016 Conference on Weather Analysis and Forecasting, A5-9, pp. 1-6. October 4-5, 2016, Central Weather Bureau, Taipei (in Chinese).
43. Huang, J.C. (1983). A review of the state-of-the-art of oil spill fate/behavior models. In Proc. 1983 Oil Spill conf., San Antonio, TX, pp. 313-323.
44. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, E.H., Zheng, Q., Tung, C.C., and Liu, H.H. (1998). The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis, Proc. Roy. Soc. London, Vol. 454A, pp. 903-995.
45. Kanevsky, M.B. (2008). Radar Imaging of the Ocean Waves. Elsevier Science.
46. Klemas, V. (2010). Tracking oil slicks and predicting their trajectories using remote sensors and models: case studies of the Sea Princess and Deepwater Horizon oil spills. J. Coast. Res., Vol. 26 (5), pp. 789-797.
47. Kujawinski, E.B., Kido Soule, M.C., Valentine, D.L., Boysen, A,K,, Longnecker, K., and Redmond, M.C. (2011). Fate of dispersants associated with the Deepwater Horizon oil spill. Environ. Sci. Technol., Vol. 45, pp. 1298-1306.
48. Lehr, W., Wesley, D., Simecek-Beatty, D., Jones, R., Kachook, G., and Lankford, J. (2000). Algorithm and interface modifications of the NOAA oil spill behavior model. Proceedings of the 23rd Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Vol. 2, pp. 525-540.
49. Lehr, W. J., and Simecek-Beatty, D. (2000). The Relation of Langmuir Circulation Processes to the Standard Oil Spill Spreading, Dispersion, and Transport Algorithms. Spill Science and Technology Bulletin Vol. 6, pp. 247–253.
50. Leifer, I., Lehr, W.J., Simecek-Beatty, D., Bradley, E., Clark, R., Dennison, P., and Wozencraft, J. (2012). State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ., Vol. 124, pp. 185-209.
51. Lin, M.C., and Kao, J.C. (2016). Marine environmental protection: an application of the nanometer photo catalyst method on decomposition of benzene. Mar. Poll. Bull., Vol. 105, pp. 139-142.
52. Lin, Y.P., Huang, C.J., Chen, S.H., Doong, D.J., and Kao, C.C. (2017). Development of a GNSS buoy for monitoring water surface elevations in estuaries and coastal areas. Sensors, Vol. 17, 172, doi:10.3390/s17010172.
53. Liu, P., Li, Y., Xu, J., and Zhu, X. (2017). Adaptive enhancement of X-band marine radar imagery to detect oil spill segments. Sensors, Vol. 17, 2349; doi: 10.3390/s17102349.
54. Mackay, D., Paterson, S., and Trudel, K. (1980). A mathematical model of oil spill behavior. Department of Chemical and Applied Chemistry, University of Toroto, Canada, pp. 30.
55. Mackay, D., Shiu, W.Y., Hossain, K., Stiver, W., McCurdy, D., and Peterson, S. (1982). Development and calibration of an oil spill behavior model. Report No. CG-D-27-83. U.S. Coast Guard, Research and Development Center, Groton, Connecticut, pp. 83.
56. Mellor, G.L., and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophysics, Vol. 20, pp. 851-875.
57. Montgomery, D.C., and Runger, G.C. (2010). Applied Statistics and Probability for Engineers. John Wiley & Sons, New York.
58. NAS (2003). Oil in the Sea III, Inputs, Fates, and Effects, National Research Council, National Academies Press, Washington, D.C.
59. Nieto Borge, J.C., and Guedes Soares, C. (2000). Analysis of directional wave fields using X-band navigation radar. Coastal Eng., Vol. 40(4), pp. 375-391.
60. Nieto Borge, J.C., Rodriguez, G.R., Hessner, K., and Gonzalez, P.I. (2004). Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean Tech. Vol. 21, pp. 1291-1300.
61. NOAA. (2002) “GNOME™ User’s Manual,” National Oceanic and Atmospheric Administration. Office of Response and Restoration, Hazardous Materials Response Division, 94 pp.
62. North, E.W., Hood, R.R., Chao, S.Y., and Sanford, L.P. (2006). Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: A new implementation scheme and model performance tests. J. Mar. Syst., Vol. 60, pp. 365-380.
63. North, E.W., Adams, E.E., Schlag, Z., Sherwood, C.R., He, R., Hyun, K. H., and Socolofsky, S.A. (2011). Simulating oil droplet dispersal from the Deepwater Horizon Spill with a Lagrangian approach, in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Liu, Y., MacFadyen, A., Ji, Z.-G., and Weisberg, R. H., Eds. Washington, DC: Amer. Geophys. Union, pp. 217-226.
64. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE T. Syst., Man Cyb., Vol. 9(1), pp. 62-66.
65. Peterson, C.H., Rice, S.D., Short, J.W., Esler, D., Bodkin, J.L., Ballachey, B.E., and Irons, D.B. (2003). Long-term ecosytem response to the Exxon Valdez oil spill. Science, Vol. 302, pp. 2082-2086.
66. Plant, W.J. (1990). Bragg scattering of electromagnetic waves from the air/sea interface. In: Surface Waves and Fluxes, Vol. II-Remote Sensing, edited by G.L. Geernaert and W.L. Plant, pp. 41-108, Springer Netherlands.
67. Reed, M., and Gundlach, E. (1989). A coastal zone oil spill model: Development and sensitivity studies. Oil Chem. Pollut., Vol. 5, pp. 411-449.
68. Reed, M., Johansen, Ø., Brandvik, P.J., Daling, P., Lewis, A., Fiocco, R., Mackay, D., and Prentki, R. (1999). Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci. Technol. B., Vol. 5(1), pp. 3-16.
69. Reed, M., Daling, P., Brakstad, O., Singsaas, I., Faksness, L., Hetland, B., and Ekrol, N. (2000). Oscar: a multi-component 3-dimensional oil spill contingency and response model. Proceedings of the Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Vancouver, CA, pp. 663-680.
70. Rodi, W. (1984). Turbulence models and their applications in hydraulics: a state of the art review. International Association for Hydraulics Research, Delft, The Netherlands.
71. SCHISM development teams. (2016). SCHISM v5.3.1 Manual, November 26, 2016. http://ccrm.vims.edu/schismweb/schism manual v5.3.pdf.
72. Schloen, J., Stanev, E. V., and Grashorn, S. (2017). Wave-current interactions in the southern North Sea: The impact on salinity. Ocean Model., Vol. 111, pp. 19-37.
73. Senet, C.M., Seemann, J., and Ziemer, F. (2001). The near-surface current velocity determined from image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens., Vol. 39(3), pp. 492-505.
74. Simecek-Beatty, D. and Lehr, W. J. (2007) Trajectory modeling of marine oil spills. In: oil spill environmental forensics: fingerprinting and source identification; Chap. 13, Academic Press, pp. 405-418.
75. Simecek-Beatty, D. (2011). Oil spill trajectory forecasting uncertainty and emergency response. In: Oil Spill Science and Technology, Prevention, Response, and Cleanup; Chap. 11. Elsevier, pp. 275–299.
76. Schwartz, C. S., Liu, Z., Huang, X. Y., Kuo, Y. H., and Fong, C. T. (2013). Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Monthly Weather Review, Vol. 141(12), pp. 4350-4372.
77. Spaulding, M.L. (2017). State of the art review and future directions in oil spill modeling. Mar. Poll. Bull., Vol. 115, pp. 7-19.
78. Spaulding, M.L., Howlett, E., Anderson, E., and Jayko, K. (1992). OILMAP: a global approach to spill modeling. 15th Arctic and marine Oil Spill Program. Technical Seminar, Edmonton, Alberta, Canada, June 9-11, 1992, pp. 15-21.
79. Stolzenbach, K. D., Madsen, O. S., Adams, E. E., Pollack, A. M., and Cooper, C. K. (1977). A review and evaluation of basic techniques for predicting the behavior of surface oil slicks. Cambridge: Rep. 22, Department of Civil Engineering, Massachusetts Institute of Technology.
80. Tarr, M.A., Zito, P., Overton, E.B., Olson, G.M., Adhikari, P.L., and Reddy, C.M. (2016). Weathering of oil spilled in the marine environment. Oceanography, Vol. 29, pp. 126-135.
81. Tennyson, E.J. (1988). Shipborne radar as an oil spill tracking tool. Proceedings of the 11th Arctic and marine Oil Spill Program, Technical Seminar, Vancouver, June 7-9, 1988, pp. 385-390.
82. Tkalich, P. (2006). A CFD solution of oil spill problems. Environ. Modell. Softw., Vol. 21, pp. 271-282.
83. Tomas, L.M., Rodrigues, M., Fortunato, A.B., Azevedo, A., Leitão, P.C., Oliveira, A., Rocha, A., Lopes, J.F., and Dias, J.M. (2014). Salinity modelling accuracy of a coastal lagoon: a comparative river flow analysis of basin model vs. traditional approaches. J. Coast. Res., Vol. 70, pp. 586-591.
84. Tsai, C.H., Doong, D.J., Chen, Y.C., Yen, C.W., and Maa, M.J. (2016). Tidal stream characteristics on the coast of Cape Fuguei in Northwestern Taiwan for a potential power generation site. Int. J. Mar. Energy, Vol. 13, pp. 193-205.
85. Umlauf, L., and Burchard, H. (2003). A generic length-scale equation for geophysical turbulence models. J. Mar. Res., Vol. 6, pp. 235-265.
86. Visser, A.W. (1997). Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol. Prog. Ser., Vol. 158, pp. 275-281.
87. Wadsworth, A., Looyen, W.J., Reuter, R., and Petit, M. (1992). Aircraft experiments with visible and infrared sensors. Int. J. Remote Sens., Vol. 13 (6 & 7), pp. 1175-1199.
88. Wang, Y.H., Jan, S., and Wang, D.P. (2003). Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001). Estuarine, Coastal and Shelf Science, Vol. 57, pp. 193-199.
89. Weijenborg, A.J. (2015). Validation of X-band radar-derived current measurements at the Sand Engine: The relation between spatial scale of wave dispersion analysis and accuracy. PhD thesis, Delft University of Technology, Netherlands, 73 pages.
90. Wilcox, D.C. (1998). Reassessment of scale determining equation for advance turbulence models. AIAA Journal, Vol. 26, pp. 1299-1310.
91. Wu, Z., and Huang, N.E. (2008). Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method, Advances in Adaptive Data Analysis, Vol. 1(1), pp. 1-41, World Scientific Publishing Company.
92. Young, I.R., Rosenthal, W., and Ziemer, F. (1985). A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. J. Geophys. Res., Oceans, Vol. 90, pp. 1049-1059.
93. Yu, H.-C., Zhang, Y.J., Yu, J.C.S., Terng, C., Sun, W., Ye, F., Wang, H.V., Wang, Z., and Huang, H. (2017). Simulating multi-scale oceanic processes around Taiwan on unstructured grids, Ocean Model., Vol. 112, pp. 72-93.
94. Zelenke, B., C. O'Connor, C. Barker, C.J. Beegle-Krause, and L. Eclipse (2012). General NOAA Operational Modeling Environment (GNOME) Technical Documentation. U.S. Dept. of Commerce, NOAA Technical Memorandum NOS OR&R 40. Seattle, WA: Emergency Response Division, NOAA. 105 pp.
95. Zeng, X., Zhao, M., and Dickinson, R.E. (1998). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Clim., Vol. 11, pp. 2618-2644.
96. Zhang, Y.J., and Baptista, A.M. (2008). SELFE: a semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model., Vol. 21, pp. 71-96.
97. Zhang, Y. J., Ateljevich E., Yu H. C., Wu C. H., and Yu J. C.S. (2015). A new vertical coordinate system for a 3D unstructured-grid model. Ocean Model., Vol. 85, pp. 16-31.
98. Zhang, Y.J., Ye, F., Stanev, E.V., and Grashorn, S. (2016). Seamless cross-scale modeling with SCHISM. Ocean Model., Vol. 102, pp. 64-81.
99. Zheng, L., and Yapa, P.D. (2000). Buoyant velocity of spherical and nonspherical bubbles/droplets. J. Hydraul. Eng., Vol. 126 (11), pp. 852-854.
100. Zelenke, B., O'Connor, C., Barker, C. H., Beegle-Krause, C. J., and Eclipse, L. (2012). General NOAA Operational Modeling Environment (GNOME) Technical Documentation.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-01-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-01-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw