進階搜尋


下載電子全文  
系統識別號 U0026-2801201516535800
論文名稱(中文) CD47在小腦顆粒細胞發育與髓母細胞瘤細胞複製所扮演的角色
論文名稱(英文) The role of CD47 in cerebellar granule cell development and medulloblastoma cell proliferation
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 103
學期 1
出版年 104
研究生(中文) 謝崇斌
研究生(英文) Chung-Pin Hsieh
電子信箱 CPHsieh826@gmail.com
學號 S58961303
學位類別 博士
語文別 英文
論文頁數 93頁
口試委員 指導教授-黃阿敏
召集委員-司君一
口試委員-許桂森
口試委員-曾淑芬
口試委員-陳志成
口試委員-李宜釗
中文關鍵字 CD47  小腦顆粒細胞  細胞複製  遷移  神經突分化  社交行為  憂鬱行為  髓母細胞瘤  c-Myc  MAPK 
英文關鍵字 CD47  cerebellar granule cells  proliferation  migration  neurite differentiation  social behavior  depression  medulloblastoma  c-Myc  MAPK 
學科別分類
中文摘要 CD47是一種細胞膜類免疫球蛋白受器,具有調節神經細胞分化的功能。然而CD47在小腦發育及小腦相關疾病所扮演的角色,仍多所未知。本研究第一部份,探討CD47在小腦發育及相關行為之角色。首先以原位雜交法觀察CD47 mRNA在小鼠腦發育過程的表現,發現CD47 mRNA大量表現在發育中的小腦,尤其是小腦顆粒細胞。CD47蛋白質明顯表現在小腦外顆粒層之內層、分子層與內顆粒層,這些區域分別存在著終止複製、遷移與神經突分化中的顆粒細胞。利用CD47基因剃除小鼠,發現在顆粒細胞細胞複製增加、遷移受阻、軸突與樹突數目與分支的減少。CD47基因剃除小鼠也顯示了小腦結構的異常,介於第VI與VII腦葉之間的腦溝長度明顯變短。CD47基因剔除小鼠也伴隨行為的異常,出生後3週社交行為異常增加,出生後14週出現類憂鬱行為。本研究第二部份,探討CD47在小腦腫瘤細胞複製之角色。在人類髓母細胞瘤Daoy細胞中,CD47基因knockdown會促進細胞複製。相反的,大量表現CD47或活化CD47皆有效減少Daoy細胞的複製。活化CD47也明顯降低致癌基因c-Myc mRNA與蛋白質表現,而MAPK抑制劑則有效反轉此抑制效果。另外,CD47抗體明顯增加兩種髓母細胞瘤Daoy與VGH-MED細胞的複製,然而卻減少其他神經細胞瘤IMR32與SK-N-SH的細胞數。綜合以上結果,本研究發現,CD47可調節小腦顆粒細胞發育過程中的複製、遷徙與分化;CD47基因剔除小鼠呈現小腦結構與行為異常。另外,本研究也證實,在人類髓母細胞瘤細胞中,CD47可經由活化MAPK活性、減少c-Myc表現而抑制細胞複製;處理CD47抗體增加髓母細胞瘤複製。本研究不僅提供CD47在小腦顆粒細胞發育及小腦相關行為的角色,同時也提出CD47抗體在治療小腦腫瘤的風險。
英文摘要 CD47 is an immunoglobulin-like membrane protein that is known to be involved in neuronal differentiation. However, roles of CD47 in cerebellar development and relevant diseases remain poorly understood. At the first part of this study, we identify roles of CD47 in cerebellar granule cell development and related behaviors. Firstly, in situ hybridization was used to determine distribution of CD47 mRNA in the mouse brain during development. CD47 mRNA was robustly expressed in the developing cerebellum, especially in cerebellar granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells become postmitotic, start radial migration and differentiate into mature granule cells, respectively. By using CD47 knockout mice, increased proliferation, impaired migration and decreased neurite arborization including reduced number of branches in axonal collaterals and dendrites were found in cerebellar granule cells. Meanwhile, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice. In addition, CD47 knockout mice exhibited dysfunction in behaviors including increased social interaction at P21 and depressive-like behaviors at 10 wk after birth. At the second part of this study, we characterized roles of CD47 in proliferation of medulloblastoma cells. In human medulloblastoma Daoy cells, knockdown of CD47 increased cell proliferation. On the contrary, overexpression and activation of CD47 significantly inhibited cell proliferation. Moreover, CD47 activation significantly reduced the expression level of oncogene c-Myc mRNA and protein and the inhibition be reversed by the MAPK inhibitor. In addition, anti-CD47 antibody significantly increased the proliferation in medulloblastoma cell lines Daoy and VGH-MED but decreased cell number in other neuroblastoma cells such as IMR32 and SK-N-SH cells. In summary, this study demonstrated that CD47 regulates cerebellar granule cell development including proliferation, migration and neurite differentiation, CD47 knockout mice exhibit abnormalities in cerebellar structures and atypical behaviors, CD47 inhibits proliferation of medulloblastoma cells via MAPK activation and c-Myc downregulation, and anti-CD47 antibody treatment increases proliferation of medulloblastoma. Our study not only provides roles of CD47 in cerebellar granule cell development and cerebellum relevant behaviors but also highlight the risk of the application of anti-CD47 antibody on the therapy of cerebellar tumors.
論文目次 I. Introduction ............................................................................................................ 1
1.1. CD47 Structure and Partners........................................................................... 2
1.2. CD47 in Neuronal Differentiation .................................................................. 4
1.3. Cerebellar Granule Cell Development ............................................................ 5
1.4. Abnormal Cerebellar Granule Cell Development and Dysfunction in
Behaviors ............................................................................................................... 6
1.5. Cerebellar Granule Cell Proliferation and Medulloblastoma Formation ........ 6
1.6. Potential Involvement of CD47 in MB Cell Proliferation .............................. 7
1.7. Hypothesis ....................................................................................................... 8
1.8. Specific aims ................................................................................................... 8
II. Materials and Methods ........................................................................................... 9
2.1. Animals ......................................................................................................... 10
2.2. In situ hybridization ...................................................................................... 10
2.3. Immunohistochemistry ................................................................................. 11
2.4. Proliferation assay ......................................................................................... 12
2.4.1. CD47 knockout mice ......................................................................... 12
2.4.2. Primary cerebellar granule cell cultures ............................................ 12
2.5. Migration assay ............................................................................................. 13
2.5.1. Migration of newborn granule cells in CD47 knockout mice ............ 14
2.5.2. Cerebellar slice cultures ..................................................................... 14
2.5.3 Cerebellar microexplant cultures ........................................................ 15
2.6. Neurite differentiation analysis ..................................................................... 15
2.6.1. Plasmid DNA constructs .................................................................... 15
2.6.2. Transient transfection and 4N1K treatment ....................................... 16
2.6.3. Measurement of neurite parameters ................................................... 17
2.7. Structural analysis of cerebellar cortex ......................................................... 17
2.8. The 3-chamber social-behavior test .............................................................. 17
2.9. Open-field test ............................................................................................... 18
2.10. Tail-suspension test ..................................................................................... 19
2.11. Rotarod test ................................................................................................. 19
2.12. Cell cultures ................................................................................................ 19
2.13. Lentiviral shRNA production and infection ................................................ 20
2.14. Reverse transcription polymerase chain reaction (RT-PCR) ...................... 20
2.15. BrdU incorporation assay in MB cell lines ................................................. 21
2.16. Colony formation analysis .......................................................................... 22
2.17. 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) assay
....................................................................................................................22
2.18. AlamarBlue assay ........................................................................................ 23
2.19. Plasmid DNA constructs and transient transfection in Daoy cells ............. 23
2.20. Western blotting .......................................................................................... 24
2.21. Statistical analysis ....................................................................................... 25
III. Results .................................................................................................................. 26
Part I. Deficits in cerebellar granule cell development and social interactions in CD47
knockout mice ...................................................................................................... 26
3.1. Expression of CD47 during development ..................................................... 27
3.2. Expression of CD47 in developing cerebellar granule cells ......................... 28
3.3. Deficits in postmitotic progression of cerebellar granule cells in CD47
knockout mice ...................................................................................................... 28
3.4. Impaired migration of cerebellar granule cells in CD47 knockout mice ...... 31
3.5. Defective axonal and dendritic growth in cerebellar granule cells in CD47
knockout mice ...................................................................................................... 32
3.6. Effect of CD47 expression and activity on axonal and dendritic growth in
cerebellar granule cells ........................................................................................ 33
3.7. Diminished length of fissures between cerebellar lobules in CD47 knockout
mice. ..................................................................................................................... 34
3.8. CD47-deficient mice exhibit abnormal social interaction ............................ 34
3.9. Depressive-like behavior in CD47 knockout mice ....................................... 35
Part II. CD47 inhibits proliferation of medulloblastoma cells via MAPK activation
and c-Myc downregulation .................................................................................. 37
3.10. Knockdown of CD47 increased proliferation of Daoy cells ....................... 38
3.11. Overexpression and activation of CD47 decreased proliferation of Daoy
cells ....................................................................................................................38
3.12. CD47 down-regulates the expression of c-Myc but not genes downstream
of Shh and Notch signaling in Daoy cells ............................................................ 39
3.13. CD47 inhibits cell proliferation via the MAPK pathway in Daoy cells ..... 40
3.14. Differential effects of the MAPK and AKT inhibitor on c-Myc by the
treatment of 4N1K in Daoy cells and U-87 MG cells ......................................... 40
3.15. Anti-CD47 antibodies increased the proliferation in human MB cells but
not in other neuronal tumor cells ......................................................................... 41
IV. Discussion ............................................................................................................ 43
4.1. Major findings ............................................................................................... 44
4.2. CD47 regulates multiple stages of cerebellar granule cell development ..... 44
4.2.1. CD47 inhibits proliferation of cerebellar granule cells ...................... 45
4.2.2. CD47 is essential for migration of cerebellar granule cells ............... 47
4.2.3. CD47 promotes neurite differentiation in cerebellar granule cells .... 47
4.3. CD47 knockout mice exhibited a shorter fissure between Lobules VI and VII
....................................................................................................................48
4.4. CD47 knockout mice showed abnormal social and depressive-like behaviors
....................................................................................................................49
4.4.1. CD47 knockout mice showed abnormal social behaviors ................. 49
4.4.2. CD47 knockout mice exhibited depressive-like behaviors ................ 50
4.5. CD47 inhibits proliferation of Daoy cells ..................................................... 50
4.5.1. Knockdown of CD47 increases proliferation in Daoy cells .............. 50
4.5.2. Overexpression and activation of CD47 inhibit proliferation of Daoy
cells .............................................................................................................. 51
4.6. CD47 inhibits Daoy cell through MAPK signaling and c-Myc expression .. 52
4.6.1. Inhibition of CD47 on Daoy cell proliferation depends on
downregulation of c-Myc ............................................................................. 52
4.6.2. CD47 inhibits proliferation of Daoy cells via MAPK activation ...... 52
4.6.3. Downregulation of c-Myc mediated by CD47 depends on MAPK
activation. ..................................................................................................... 53
4.7. Opposite effects of anti-CD47 antibody on cell proliferation in MB and other
tumor cell lines ..................................................................................................... 53
V. Conclusion ........................................................................................................... 55
VI. Future Directions ................................................................................................. 55
VII. References ............................................................................................................ 57
VIII. Figures .................................................................................................................. 67
IX. Publications .......................................................................................................... 93
參考文獻 Adamson DC, Shi Q, Wortham M, Northcott PA, Di C, Duncan CG, Li J, McLendon RE, Bigner DD, Taylor MD, Yan H. 2010. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res 70:181-191.
Anne SL, Govek EE, Ayrault O, Kim JH, Zhu X, Murphy DA, Van Aelst L, Roussel MF, Hatten ME. 2013. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 8:e81769.
Avale ME, Chabout J, Pons S, Serreau P, De Chaumont F, Olivo-Marin JC, Bourgeois JP, Maskos U, Changeux JP, Granon S. 2011. Prefrontal nicotinic receptors control novel social interaction between mice. FASEB J 25:2145-2155.
Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S, Tang Y, Bolin S, Schumacher SE, Zeid R, Masoud S, Yu F, Vue N, Gibson WJ, Paolella BR, Mitra SS, Cheshier SH, Qi J, Liu KW, Wechsler-Reya R, Weiss WA, Swartling FJ, Kieran MW, Bradner JE, Beroukhim R, Cho YJ. 2014. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res 20:912-925.
Basson MA, Wingate RJ. 2013. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat 7:29.
Behesti H, Marino S. 2009. Cerebellar granule cells: insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int J Biochem Cell Biol 41:435-445.
Bhatt RS, Tomoda T, Fang Y, Hatten ME. 2000. Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons. Genes Dev 14:2216-2228.
Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A, Senften M, Guo H, Li Y, Miner JH, Reichardt LF, Muller U. 2004. Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci 24:3402-3412.
Blank MC, Grinberg I, Aryee E, Laliberte C, Chizhikov VV, Henkelman RM, Millen KJ. 2011. Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development 138:1207-1216.
Brooke GP, Parsons KR, Howard CJ. 1998. Cloning of two members of the SIRP alpha family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells. Eur J Immunol 28:1-11.
Brown EJ, Frazier WA. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130-135.
Butts T, Chaplin N, Wingate RJ. 2011. Can clues from evolution unlock the molecular development of the cerebellum? Mol Neurobiol 43:67-76.
Chang HP, Ma YL, Wan FJ, Tsai LY, Lindberg FP, Lee EH. 2001. Functional blocking of integrin-associated protein impairs memory retention and decreases glutamate release from the hippocampus. Neuroscience 102:289-296.
Chang WT, Chen HI, Chiou RJ, Chen CY, Huang AM. 2005. A novel function of transcription factor alpha-Pal/NRF-1: increasing neurite outgrowth. Biochem Biophys Res Commun 334:199-206.
Chang WT, Huang AM. 2004. Alpha-Pal/NRF-1 regulates the promoter of the human integrin-associated protein/CD47 gene. J Biol Chem 279:14542-14550.
Chizhikov V, Millen KJ. 2003. Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54-65.
Chung J, Gao AG, Frazier WA. 1997. Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem 272:14740-14746.
Congote LF, Temmel N. 2004. The C-terminal 26-residue peptide of serpin A1 stimulates proliferation of breast and liver cancer cells: role of protein kinase C and CD47. FEBS Lett 576:343-347.
Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH, Schreibman L. 1994. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am J Roentgenol 162:123-130.
de Haas T, Hasselt N, Troost D, Caron H, Popovic M, Zadravec-Zaletel L, Grajkowska W, Perek M, Osterheld MC, Ellison D, Baas F, Versteeg R, Kool M. 2008. Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression. Clin Cancer Res 14:4154-4160.
DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD. 2008. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187:207-220.
Demeure CE, Tanaka H, Mateo V, Rubio M, Delespesse G, Sarfati M. 2000. CD47 engagement inhibits cytokine production and maturation of human dendritic cells. J Immunol 164:2193-2199.
Duparc RH, Boutemmine D, Champagne MP, Tetreault N, Bernier G. 2006. Pax6 is required for delta-catenin/neurojugin expression during retinal, cerebellar and cortical development in mice. Dev Biol 300:647-655.
Engelkamp D, Rashbass P, Seawright A, van Heyningen V. 1999. Role of Pax6 in development of the cerebellar system. Development 126:3585-3596.
Espinosa JS, Luo L. 2008. Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28:2301-2312.
Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ. 2007. Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci U S A 104:2973-2978.
Fults D, Pedone C, Dai C, Holland EC. 2002. MYC expression promotes the proliferation of neural progenitor cells in culture and in vivo. Neoplasia 4:32-39.
Gao AG, Frazier WA. 1994. Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins. J Biol Chem 269:29650-29657.
Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. 1996. Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 135:533-544.
Gao AG, Lindberg FP, Finn MB, Blystone SD, Brown EJ, Frazier WA. 1996. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem 271:21-24.
Gilhuis HJ, Anderl KL, Boerman RH, Jeuken JM, James CD, Raffel C, Scheithauer BW, Jenkins RB. 2000. Comparative genomic hybridization of medulloblastomas and clinical relevance: eleven new cases and a review of the literature. Clin Neurol Neurosurg 102:203-209.
Gramsbergen A. 2003. Clumsiness and disturbed cerebellar development: insights from animal experiments. Neural Plast 10:129-140.
Grimmer MR, Weiss WA. 2008. BMPs oppose Math1 in cerebellar development and in medulloblastoma. Genes Dev 22:693-699.
Hashimoto M, Hibi M. 2012. Development and evolution of cerebellar neural circuits. Dev Growth Differ 54:373-389.
Hatten ME, Roussel MF. 2011. Development and cancer of the cerebellum. Trends Neurosci 34:134-142.
Higashida H, Yokoyama S, Huang JJ, Liu L, Ma WJ, Akther S, Higashida C, Kikuchi M, Minabe Y, Munesue T. 2012. Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 61:828-838.
Hsieh CP, Chang WT, Lee YC, Huang AM. 2014. Deficits in cerebellar granule cell development and social interactions in CD47 knockout mice. Dev Neurobiol.
Iruela-Arispe ML, Liska DJ, Sage EH, Bornstein P. 1993. Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev Dyn 197:40-56.
Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD. 2006. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281:26069-26080.
Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL. 2009. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271-285.
Jiang P, Lagenaur CF, Narayanan V. 1999. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J Biol Chem 274:559-562.
Kaur S, Martin-Manso G, Pendrak ML, Garfield SH, Isenberg JS, Roberts DD. 2010. Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J Biol Chem 285:38923-38932.
Kaur S, Soto-Pantoja DR, Stein EV, Liu C, Elkahloun AG, Pendrak ML, Nicolae A, Singh SP, Nie Z, Levens D, Isenberg JS, Roberts DD. 2013. Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Sci Rep 3:1673.
Kerjan G, Dolan J, Haumaitre C, Schneider-Maunoury S, Fujisawa H, Mitchell KJ, Chedotal A. 2005. The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat Neurosci 8:1516-1524.
Kim YS, Harry GJ, Kang HS, Goulding D, Wine RN, Kissling GE, Liao G, Jetten AM. 2010. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia. Cerebellum 9:310-323.
Komuro H, Yacubova E. 2003. Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084-1098.
Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T. 2014. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice. PLoS One 9:e89584.
Koskinen C, Persson E, Baldock P, Stenberg A, Bostrom I, Matozaki T, Oldenborg PA, Lundberg P. 2013. Lack of CD47 impairs bone cell differentiation and results in an osteopenic phenotype in vivo due to impaired signal regulatory protein alpha (SIRPalpha) signaling. J Biol Chem 288:29333-29344.
Lee HY, Greene LA, Mason CA, Manzini MC. 2009. Isolation and culture of post-natal mouse cerebellar granule neuron progenitor cells and neurons. J Vis Exp.
Lindberg FP, Bullard DC, Caver TE, Gresham HD, Beaudet AL, Brown EJ. 1996. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274:795-798.
Lindberg FP, Gresham HD, Schwarz E, Brown EJ. 1993. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 123:485-496.
MacDonald TJ, Aguilera D, Castellino RC. 2014. The rationale for targeted therapies in medulloblastoma. Neuro Oncol 16:9-20.
Manna PP, Dimitry J, Oldenborg PA, Frazier WA. 2005. CD47 augments Fas/CD95-mediated apoptosis. J Biol Chem 280:29637-29644.
Manna PP, Frazier WA. 2004. CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 64:1026-1036.
McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D, Housman D, Savill J, Roes J, Hynes RO. 2005. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132:165-176.
Michiels EM, Oussoren E, Van Groenigen M, Pauws E, Bossuyt PM, Voute PA, Baas F. 1999. Genes differentially expressed in medulloblastoma and fetal brain. Physiol Genomics 1:83-91.
Miller TW, Kaur S, Ivins-O'Keefe K, Roberts DD. 2013. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biol 32:316-324.
Miyashita M, Ohnishi H, Okazawa H, Tomonaga H, Hayashi A, Fujimoto TT, Furuya N, Matozaki T. 2004. Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol Biol Cell 15:3950-3963.
Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y. 2000. A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci 20:5756-5763.
Motegi S, Okazawa H, Ohnishi H, Sato R, Kaneko Y, Kobayashi H, Tomizawa K, Ito T, Honma N, Buhring HJ, Ishikawa O, Matozaki T. 2003. Role of the CD47-SHPS-1 system in regulation of cell migration. EMBO J 22:2634-2644.
Muller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S, Sharp P, Fietz PB, Baumgart-Vogt E, Crane DI. 2011. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 4:104-119.
Murata T, Ohnishi H, Okazawa H, Murata Y, Kusakari S, Hayashi Y, Miyashita M, Itoh H, Oldenborg PA, Furuya N, Matozaki T. 2006. CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J Neurosci 26:12397-12407.
Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN. 2004. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303-314.
NCT02096770 CgI. 2014. Phase I, Multicenter, Open-label, Dose-escalating, Clinical and Pharmacokinetic Study of Humanized Anti-CD47 Antibody as Single Agent in Patients With Advanced or Metastatic Solid Tumors. U.S. FDA Resources
Numakawa T, Ishimoto T, Suzuki S, Numakawa Y, Adachi N, Matsumoto T, Yokomaku D, Koshimizu H, Fujimori KE, Hashimoto R, Taguchi T, Kunugi H. 2004. Neuronal roles of the integrin-associated protein (IAP/CD47) in developing cortical neurons. J Biol Chem 279:43245-43253.
O'Shea KS, Rheinheimer JS, Dixit VM. 1990. Deposition and role of thrombospondin in the histogenesis of the cerebellar cortex. J Cell Biol 110:1275-1283.
Ohmstede CA, Jensen KF, Sahyoun NE. 1989. Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. J Biol Chem 264:5866-5875.
Ohnishi H, Murata T, Kusakari S, Hayashi Y, Takao K, Maruyama T, Ago Y, Koda K, Jin FJ, Okawa K, Oldenborg PA, Okazawa H, Murata Y, Furuya N, Matsuda T, Miyakawa T, Matozaki T. 2010. Stress-evoked tyrosine phosphorylation of signal regulatory protein alpha regulates behavioral immobility in the forced swim test. J Neurosci 30:10472-10483.
Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT, Lin SM, Wechsler-Reya RJ. 2005. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132:2425-2439.
Pao PC, Huang NK, Liu YW, Yeh SH, Lin ST, Hsieh CP, Huang AM, Huang HS, Tseng JT, Chang WC, Lee YC. 2011. A novel RING finger protein, Znf179, modulates cell cycle exit and neuronal differentiation of P19 embryonal carcinoma cells. Cell Death Differ 18:1791-1804.
Park M, Oh H, York DA. 2009. Enterostatin affects cyclic AMP and ERK signaling pathways to regulate Agouti-related protein (AgRP) expression. Peptides 30:181-190.
Piccio L, Vermi W, Boles KS, Fuchs A, Strader CA, Facchetti F, Cella M, Colonna M. 2005. Adhesion of human T cells to antigen-presenting cells through SIRPbeta2-CD47 interaction costimulates T-cell proliferation. Blood 105:2421-2427.
Pickford LB, Mayer DN, Bolin LM, Rouse RV. 1989. Transiently expressed, neural-specific molecule associated with premigratory granule cells in postnatal mouse cerebellum. J Neurocytol 18:465-478.
Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW. 2003. c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5:198-204.
Rebres RA, Vaz LE, Green JM, Brown EJ. 2001. Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J Biol Chem 276:34607-34616.
Reinhold MI, Lindberg FP, Plas D, Reynolds S, Peters MG, Brown EJ. 1995. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci 108 ( Pt 11):3419-3425.
Rendtlew Danielsen JM, Knudsen LM, Dahl IM, Lodahl M, Rasmussen T. 2007. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br J Haematol 138:756-760.
Rickert CH, Paulus W. 2001. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 17:503-511.
Rodriguez-Moldes I, Ferreiro-Galve S, Carrera I, Sueiro C, Candal E, Mazan S, Anadon R. 2008. Development of the cerebellar body in sharks: spatiotemporal relations of Pax6 expression, cell proliferation and differentiation. Neurosci Lett 432:105-110.
Roussel MF, Hatten ME. 2011. Cerebellum development and medulloblastoma. Curr Top Dev Biol 94:235-282.
Roussel MF, Robinson GW. 2013. Role of MYC in Medulloblastoma. Cold Spring Harb Perspect Med 3.
Rutkowski S, von Bueren A, von Hoff K, Hartmann W, Shalaby T, Deinlein F, Warmuth-Metz M, Soerensen N, Emser A, Bode U, Mittler U, Urban C, Benesch M, Kortmann RD, Schlegel PG, Kuehl J, Pietsch T, Grotzer M. 2007. Prognostic relevance of clinical and biological risk factors in childhood medulloblastoma: results of patients treated in the prospective multicenter trial HIT'91. Clin Cancer Res 13:2651-2657.
Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, Okamoto T, Nakashima H, Kimura K, Tanaka M, Sekine Y, Itohara S, Yuzaki M, Nagao S, Furuichi T. 2007. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 27:2472-2482.
Sano H, Nagai Y, Miyakawa T, Shigemoto R, Yokoi M. 2008. Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J Neurochem 105:546-556.
Schaefer GB, Thompson JN, Bodensteiner JB, McConnell JM, Kimberling WJ, Gay CT, Dutton WD, Hutchings DC, Gray SB. 1996. Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Ann Neurol 39:382-385.
Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG. 2009. A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2:246-257.
Sick E, Boukhari A, Deramaudt T, Ronde P, Bucher B, Andre P, Gies JP, Takeda K. 2011. Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia 59:308-319.
Sick E, Jeanne A, Schneider C, Dedieu S, Takeda K, Martiny L. 2012. CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br J Pharmacol 167:1415-1430.
Sotelo C. 2004. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295-339.
Streit M, Velasco P, Brown LF, Skobe M, Richard L, Riccardi L, Lawler J, Detmar M. 1999. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 155:441-452.
Sudarov A, Joyner AL. 2007. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2:26.
Tsao PW, Mousa SA. 1995. Thrombospondin mediates calcium mobilization in fibroblasts via its Arg-Gly-Asp and carboxyl-terminal domains. J Biol Chem 270:23747-23753.
Vaillant C, Monard D. 2009. SHH pathway and cerebellar development. Cerebellum 8:291-301.
Van VQ, Darwiche J, Raymond M, Lesage S, Bouguermouh S, Rubio M, Sarfati M. 2008. Cutting edge: CD47 controls the in vivo proliferation and homeostasis of peripheral CD4+ CD25+ Foxp3+ regulatory T cells that express CD103. J Immunol 181:5204-5208.
Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL, Brown MH. 2000. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur J Immunol 30:2130-2137.
Wang VY, Zoghbi HY. 2001. Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484-491.
Wang W, Karagogeos D, Kilpatrick DL. 2011. The effects of Tag-1 on the maturation of mouse cerebellar granule neurons. Cell Mol Neurobiol 31:351-356.
Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL. 2007. Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 27:6115-6127.
Wang XQ, Frazier WA. 1998. The thrombospondin receptor CD47 (IAP) modulates and associates with alpha2 beta1 integrin in vascular smooth muscle cells. Mol Biol Cell 9:865-874.
Wang XQ, Lindberg FP, Frazier WA. 1999. Integrin-associated protein stimulates alpha2beta1-dependent chemotaxis via Gi-mediated inhibition of adenylate cyclase and extracellular-regulated kinases. J Cell Biol 147:389-400.
Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL. 2012. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109:6662-6667.
Wilson KE, Li Z, Kara M, Gardner KL, Roberts DD. 1999. Beta 1 integrin- and proteoglycan-mediated stimulation of T lymphoma cell adhesion and mitogen-activated protein kinase signaling by thrombospondin-1 and thrombospondin-1 peptides. J Immunol 163:3621-3628.
Wu AL, Wang J, Zheleznyak A, Brown EJ. 1999. Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol Cell 4:619-625.
Xenaki D, Martin IB, Yoshida L, Ohyama K, Gennarini G, Grumet M, Sakurai T, Furley AJ. 2011. F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation. Development 138:519-529.
Zhang Y, Sime W, Juhas M, Sjolander A. 2013. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur J Cancer 49:3320-3334.
Zhou L, Picard D, Ra YS, Li M, Northcott PA, Hu Y, Stearns D, Hawkins C, Taylor MD, Rutka J, Der SD, Huang A. 2010. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res 70:8199-8210.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw