系統識別號 U0026-2801201409175100
論文名稱(中文) 利用資源化鐵氧化物吸附鍶:共離子競爭效應與動力學探討
論文名稱(英文) Application of recovered iron oxide for adsorptive removal of Sr: Kinetic study and effect of coexisting ion
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 1
出版年 103
研究生(中文) 陳怡如
研究生(英文) Yi-Ru Chen
學號 L46001175
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-游鎮烽
中文關鍵字 選擇性吸附  流體化床  針鐵礦  共離子競爭 
英文關鍵字 Selectivity  Fluidized-bed  Goethite  Competitive adsorption 
中文摘要 在311東日本大地震發生後,大量的含鍶90廢水流入海中,隨著洋流漂流到世界各地,鍶90的半衰期約29年,放射性鍶容易進入人體骨髓,引發白血病和骨癌,對人類健康造成影響。
本研究使用實廠流體化床Fenton反應槽所產出的固體副產物,稱為BT鐵氧化物系列,已證實為大比表面積(150-250 m2g-1)之針鐵礦(Goethite, α-FeOOH, 0.25-1.5mm),經氫氧化鈉溶液鹼洗後,透過吸附技術來處理水中的鍶。利用X光繞射分析儀、掃描式電子顯微鏡、比表面積分析儀,進行吸附材表面分析,解析吸附材表面性質對吸附除鍶結果的影響,並利用感應耦合電漿原子發射光譜分析儀分析溶液中各金屬離子濃度。
吸附鍶實驗結果顯示,ΔG在15、30、50℃吸附實驗下皆為負值,此代表BT9在這三個溫度下,吸附鍶皆為自發性的反應;而ΔH為正值反映了此系統為吸熱反應。在30℃時BT9的最大吸附量為28.01 mg/g。
BT9對於帶1價的K離子幾乎不吸附,只吸附帶2價電的鹼土族離子。且經過24小時的吸附實驗後, BT9對各離子的去除率由高到低的順序為:Mg > Sr > Ba > Ca,此順序與水合離子數(N, the number of waters of hydration)和水合半徑(RH , the order of the hydrated radius)的比值一致。無論是含Ca、Sr共同離子吸附或是含Mg、Sr共同離子吸附及Ba、Sr共同離子吸附,皆符合二階動力式或擬二階動力式。當IMR=1時,Ca和Ba對於移除Sr沒有太大影響,當IMR=100時,所有的鹼土族離子大大降低了Sr的去除率,表示當溶液中共離子濃度增加時,離子間的競爭效應會明顯顯現,而海水中Ca和Mg濃度很高,因此BT9在Ca、Mg濃度很高的條件下將大幅降低對Sr的移除效率。
英文摘要 After the 311 earthquake in eastern Japan, huge amount of waste water with 90Sr was discharged into the sea, and spread to the worldwide by the current. The half-life of 90Sr is about 29 years and the radioactive Sr enters human bone marrow easily then causing leukemia and bone cancer.
The experiment applied as a waste iron oxide adsorbent, named BT series, for the strontium removal from the aqueous solutions; BT was recovered from real fluidized-bed Fenton equipment and was composed of a homogeneous goethite (α-FeOOH). BT has a high specific surface area (150-250m2g-1) and 0.25-1.5 mm in size, after modification, through adsorption of strontium to deal with strontium in the water. Using X-ray diffraction, scanning electron microscopy, surface area analyzers to proessive the adsorption material surface analysis and adsorb material surface properties on the adsorption results in the impact of strontium and using inductively coupled plasma atomic emission spectrometer analysis solution each metal ion concentration.
The experiment of strontium adsorption results show thatΔG at 15, 30, 50℃ under test are negative adsorption. It means that BT9 under three temperatures, the adsorption reactions of strontium are spontaneous. ΔH is positive reflection of this system is an endothermic reaction. The maximum adsorption capacity is 28.01 mg /g on BT9 at 30℃.
BT9 almost does not adsorb potassium ions and only adsorbs alkaline earth ions. After 24 hours, the adsorption experiment, the order of BT9 removal of various ions is Mg > Sr > Ba > Ca. The order is the same with the ratio of the number of waters of hydration and the order of the hydrated radius.
Whether containing Ca, Sr common ion adsorption or containing Mg, Sr common ion adsorption and Ba, Sr common ion adsorption, are in compliance with second order rate equation or pseudo second rate equatio. When IMR equal 1, Ca and Ba do not effect the removal of Sr, when IMR equal 100, all the alkaline earth ion greatly effect the removal of Sr. It means when the concentrations of the alkaline earth ion are high in the solution, the competitive effects will be obiviously. The concentration of Ca and Mg in the seawater is very high, therefore BT9 in conditions of high Ca and Mg concentration will reduce substantially the removal efficiency of Sr.

論文目次 第一章 前言 1
1-1 緣起及目的 1
1-2 研究內容 3
第二章 文獻回顧 4
2-1 鍶90特性概述 4
2-2 鐵氧化物特性與應用 5
2-2-1 鐵氧化物的種類 5
2-2-2 鐵氧化物表面化學特性 6
2-2-3 鐵氧化物BT系列之性質介紹 13
2-2-4 鐵氧化物-針鐵礦(Goethite)吸附材 18
2-2-5 鐵氧化物之應用 20
2-3-1 吸附作用 22
2-3-2 物理吸附 24
2-3-3 化學吸附 25
2-3-4 等溫吸附模式 25
2-3-5 影響吸附的因素 30
2-3-6 背景電解質對吸附反應之影響 31
2-3-7 陽離子之吸附反應 32
2-3-8 陰離子之吸附反應 33
2-3-9 共離子吸附 34
第三章 實驗 36
3-1 實驗架構 36
3-2 純化BT9 38
3-3 吸附材料基本性質鑑定 39
3-3-1 比表面積與孔隙分佈 39
3-3-2 表面型態觀察 39
3-3-3 表面元素分析 40
3-3-4 晶相分析 40
3-4 吸附實驗 42
3-4-1 實驗裝置及步驟 42
3-4-2 濃度分析 42
第四章 結果與討論 44
4-1 基本性質與鑑定分析 44
4-1-1 BT9材料基本性質 44
4-1-2 BT9晶相分析 45
4-1-3 表面型態觀察與元素分析 45
4-2 吸附實驗 48
4-2-1 吸附量與pH值之關係 48
4-2-2 溫度對吸附現象之影響 51
4-2-3 等溫吸附模式 55
4-2-4 含Sr、Ca、Mg、Ba、K之共同離子效應 58
4-2-5 含Sr、Ca共同離子效應吸附及動力學探討 61
4-2-6 含Sr、Mg共同離子效應吸附及動力學探討 68
4-2-7 含Sr、Ba共同離子效應吸附及動力學探討 73
4-2-8 共離子競爭效應 78
第五章 結論與建議 80
5-1 結論 80
5-2 建議 82
第六章 參考文獻 83
參考文獻 Adam, F., Chua, J. H. The adsorption of palmytic acid on rice husk ash chemically modified with Al(III) ion using the sol–gel technique. Journal of colloid and interface science. 280(1), 55-61, 2004.
Ali, M. A., Dzombak, D. A. Competitive sorption of simple organic acids and sulfate on goethite. Environmental science and technology. 30(4), 1061-1071, 1996.
Angove, M. J., Johnson, B. B., Wells, J. D. The influence of temperature on the adsorption of cadmium(II) and cobalt(II) on kaolinite. Journal of colloid and interface science. 204(1), 93-103, 1998.
Ankomaha, A. B. Magnesium and pH effect on zinc sorption by goethite. Soil Science. 154(3), 206-213, 1992.
Ararem, A., Bouras, O., Arbaoui, F. Adsorption of caesium from aqueous solution on binary mixture of iron pillared layered montmorillonite and goethite. Chemical Engineering Journal. 172(1), 230-236, 2011.
Ardizzone, S., Biagiotti, R., Formaro, L. A Reexamination of the point of zero charge of magnetite in aqueous solutions. ournal of Electroanalytical Chemistry. 135, 167-172, 1982.
Astumian, R. D., Sasaki, M., Yasunaga, T. Z., Schelly, A. Proton adsorption-desorption kinetics on iron oxides in aqueous suspensions, using the pressure-jump method. Journal of Physical Chemistry. 85(25), 3832-3835, 1981.
Atkinson, R. J., Posner, A. M., Quirk, J. P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. The Journal of physical chemistry. 71(3), 550-558, 1967.
Atkinson, R. J., Posner, A. M., Quirk, J. P. Crystal nucleation in Fe (III) solutions and hydroxide gels. Journal of Inorganic and Nuclear Chemistry. 30(9), 2371-2381, 1968.
Aziz, A., Jan, S., Waqar, F., Mohammad, B., Hakim, M., Yawar, W. Selective ion exchange separation of uranium from concomitant impurities in uranium materials and subsequent determination of the impurities by ICP-OES. Journal of radioanalytical and nuclear chemistry. 284(1), 117-121, 2010.
Balistrieri, L., Brewer, P.G., Murray, J.W. Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep Sea Research Part A. Oceanographic Research Papers. 28(2), 101-121, 1981.
Barron, V., Herruzo, M., Torrent, J. Phosphate Adsorption by Aluminous Hematites of Different Shapes. Soil Science Society of America Journal. 52(3), 647-651, 1988.
Biggar, J. W., Cheung, M. W. Adsorption of picloram on Panoche, Ephrata, and Palouse soils-thermodynamic approach to adsorption mechanism. Soil Science Society of America Journal. 37(6), 863-868, 1973.
Boehm, H. P. Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of the Faraday Society. 52, 264-275, 1971.
Bouhamed, F., Elouear, Z., Bouzid, J. Adsorptive removal of copper (II) from aqueous solutions on activated carbon prepared from Tunisian date stones: equilibrium, kinetics and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 741-749, 2012.
Brunauer, S., Deming, L. S., Deming, W. E., Teller, E. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society. 62(7), 1723-1732, 1940.
Buesseler, K., Aoyama, M., Fukasawa, M. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environmental science and technology, 45(23), 9931-9935, 2011.
Calvet, R. Adsorption of organic chemicals in soils. Environmental health perspectives. 83, 145, 1989.
Capo, R. C., Stewart, B. W., Chadwick, O. A. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma. 82(1-3), 197-225, 1998.
Carroll, S. A., Sarah, K. R., Louise, J. C. Peggy, A. O. Surface complexation model for strontium sorption to amorphous silica and goethite. Geochemical transactions. 9(1), 2, 2008.
Cengeloglu, Y., Kir, E., Ersoz, M. Removal of fluoride from aqueous solution by using red mud. Separation and Purification Technology. 28(1), 81-86, 2002.
Chang, H. C., Matijević, E. Interactions of metal hydrous oxides with chelating agents: IV. Dissolution of hematite. Journal of Colloid and Interface Science. 92(2), 479-488, 1983.
Chang, H. C., Thomas,W. H., Egon, M. Interactions of metal hydrous oxides with chelating agents: III. Adsorption on spherical colloidal hematite particles. Journal of Colloid and Interface Science. 92(2), 468-479, 1983.
Charlet, L., Manceau, A. A. X-ray absorption spectroscopic study of the sorption of Cr (III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. Journal of Colloid and Interface Science. 148(2), 443-458, 1992.
Charlet, L., Manceau, A. A. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. Journal of Colloid and Interface Science. 148(2), 443-458, 1992.
Chiron, N., Guilet, R., Deydier, E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: Isotherms and kinetic models. Water Research. 37 (13), 3079-3086, 2003.
Chou, S., Huang, C., Huang, Y. H. Effect of Fe2+ on catalytic oxidation in a fluidized bed reactor. Chemosphere. 39(12), 1997-2006, 1999.
Chou, S., Huang, C., Huang, Y. H. Heterogeneous and homogeneous catalytic oxidation by supported γ-FeOOH in a fluidized-bed reactor: kinetic approach. Environmental science and technology. 35(6), 1247-1251, 2001.
Christophi, C. A., Axe, L. Competition of Cd, Cu, and Pb adsorption on goethite. Journal of Environmental Engineering, 126(1), 66-74, 2000.
Chu, K. H., Hashim, M. A. Adsorption of copper (II) and EDTA‐chelated copper (II) onto granular activated carbons. Journal of Chemical Technology and Biotechnology. 75(11), 1054-1060, 2000.
Cornell, R. M., Schwertmann, U. The iron oxides. Structure, properties, reaction, occurrence and uses. VCH, Germany and USA, 1996.
Das, S., Hendry, M. J. Changes of crystal morphology of aged goethite over a range of pH (2–13) at 100° C. Applied Clay Science. 51(1), 192-197, 2011.
David, O. L., Leslie, J. E. Surface Complexation Model Parameters for Goethite (α-FeOOH). Journal of Colloid and Interface Science. 164(1), 119-125, 1994.
Davis, J. A., Leckie, J. O. Surface ionization and complexation at the oxide/water interface II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. Journal of Colloid and Interface Science. 67(1), 90-107, 1978.
Davis, J. A., Leckie, J. O. Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions. Journal of Colloid and Interface Science. 74(1), 32-43, 1980.
Davis, J. A., James, R. O., Leckie, J. O. Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. Journal of Colloid and Interface Science. 63(3), 480-499, 1978.
Davies, S. H. R., Morgan, J. J. Manganese(II) oxidation kinetics on metal oxide surfaces. Journal of Colloid and Interface Science. 129(1), 63-77, 1989.
Dong, C., Cairney, J., Sun, Q., Maddan, O. L., He, G., Deng, Y. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. Journal of Nanoparticle Research. 12(6), 2101-2109, 2010.
Fan, X., Parker, D. J., Smith, M. D. Adsorption kinetics of fluoride on low cost materials. Water Research. 37(20), 4929-4937, 2003.
Flores, R. G., Andersen, S. L. F., Maia, L. K. K., José, H. J., Moreira, R. D. F. P. M. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst. Journal of environmental management. 111, 53-60, 2012.
Gilbert, F., Refait, P., Lévêque, F., Remazeilles, C., Conforto, E. Synthesis of goethite from Fe(OH)2 precipitates: Influence of Fe(II) concentration and stirring speed. Journal of Physics and Chemistry of Solids. 69(8), 2124- 2130, 2008.
Gossuin, Y., Colet, J. M., Roch, A., Muller, R. N., Gillis, P. Cesium adsorption in hydrated iron oxide particles suspensions: an NMR study. Journal of Magnetic Resonance. 157(1), 132-136, 2002.
Guo, Z., Li, Y., Wu, W. Sorption of U (VI) on goethite: effects of pH, ionic strength, phosphate, carbonate and fulvic acid. Applied Radiation and Isotopes. 67(6), 996-1000, 2009.
Gupta, S. K. Phosphate-removal in sytems H3PO4-γ-FeOOH and H3PO4-FeC13 and characterstics of sludgephosphate (Doctoral dissertation, Ph. D. thesis, University of Bern, Switzerland), 1976.
Hansmann, D. D., Anderson, M. A. Using electrophoresis in modeling sulfate, selenite, and phosphate adsorption onto goethite. Environmental science and technology. 19(6), 544-551, 1985.
Hiroki, T., Egon, M., Louis, M. Adsorption of Co2+ ions on spherical magnetite particles. Journal of Colloid and Interface Science. 92(2), 303-314, 1983.
Ho, Y. S. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water research. 40(1), 119-125, 2006.
Hsi, C. K. D., Langmuir, D. Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model. Geochimica et Cosmochimica Acta. 49(9), 1931-1941, 1985.
Hu, J., Chen, G., Lo, I. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Research. 39(18), 4528-4536, 2005.
Huang, Y. H., Hsueh, C. L., Cheng, H. P., Su, L. C., Chen, C. Y. Thermodynamics and kinetics of adsorption of Cu (II) onto waste iron oxide. Journal of hazardous materials. 144(1), 406-411,2007.
Huang, Y. H., Huang, C. P., Lu, Y. W., Lo, C. Y. Oxidation and Immobilization of Iron and Manganese by a Fluidized Bed Reactor Reference. Water Science and Technology: Water Supply. 9(6), 619-625, 2010.
Huang, Y. H., Shih, Y. J., Chang, C. C. Adsorption of fluoride by waste iron oxide: The effects of solution pH, major coexisting anions, and adsorbent calcination temperature. Journal of hazardous materials. 186(2), 1355-1359, 2011a.
Huang, Y. H., Shih, Y. J., Chang, C. C., Chuang, S. H. A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process. Desalination and Water Treatment. 32(1-3), 351-356, 2011b.
Huang, Y. H., Shih, Y. J., Cheng, F. J. Novel KMnO4-modified iron oxide for effective arsenite removal. Journal of Hazardous Materials. 198, 1-6, 2011c.
Hui, K. S., Chao, C. Y. H., Kot, S. C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. Journal of Hazardous Materials. 127(1), 89-101, 2005.
James, R. O., Davis, J. A., Leckie, J. O. Computer simulation of the conductometric and potentiometric titrations of the surface groups on ionizable latexes. Journal of Colloid and Interface Science. 65(2), 331-344, 1978.
Jobin, R., Ghosh, M. M. Effect of buffer intensity and organic matter on the oxygenation of ferrous iron. Journal-American Water Works Association. 64(9), 590-595, 1972.
Johnson, B. B. Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite. Environmental Science Technology. 24(1), 112-118, 1990.
Kanungo, S. B. Adsorption of cations on hydrous oxides of iron: II. Adsorption of Mn, Co, Ni, and Zn onto amorphous FeOOH from simple electrolyte solutions as well as from a complex electrolyte solution resembling seawater in major ion content. Journal of Colloid and Interface Science. 162(1), 93-102, 1994.
Kingston, F. J., Posner, A. M., QUIRK, J. T. Anion adsorption by goethite and gibbsite. Journal of Soil Science. 23(2), 177-192, 1972.
Langmuir, I. The constitution and fundamental properties of solids and liquids. II. Liquids. Journal of The American Chemical Society. 39(9), 1848-1906, 1917.
Lars, L., Staffan, S., Paul, W. S. Acid/base reactions and Al(III) complexation at the surface of goethite. Geochimica et Cosmochimica Acta. 54(5), 1301-1306, 1990.
Laurent, C., Alain, A. M. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. Journal of Colloid and Interface Science. 148(2), 443-458, 1992.
Li, L., Stanforth, R. Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH). Journal of colloid and interface science, 230(1), 12-21, 2000.
Liyuan, L., James, J. M. Chemical aspects of iron oxide coagulation in water: Laboratory studies and implications for natural systems. Aquatic Sciences. 52(1), 32-55, 1990.
Lövgren, L., Sjöberg, S., Schindler, P. W. Acid/base reactions and Al (III) complexation at the surface of goethite. Geochimica et Cosmochimica Acta. 54(5), 1301-1306, 1990.
Malkoc, E., Nuhoglu, Y. Potential of tea factory waste for chromium (VI) removal from aqueous solutions: Thermodynamic and kinetic studies. Separation and Purification Technology. 54(3), 291-298, 2007.
Manceau, J., Combes, M. Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS. Physics and Chemistry of Minerals. 15( 3), 283-295, 1988.
Marinin, D. V., Brown, G. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management. 20(7), 545-553, 2000.
Matijević, E., Scheiner, P. Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe (III)-chloride,-nitrate, and-perchlorate solutions. Journal of Colloid and Interface Science. 63(3), 509-524, 1978.
Mckenzie, R. M. The adsorption of molybdenum on oxide surface. Australian Journal of Soil Research. 21(4), 505-513, 1983.
Mustafa, G., Kookana, R. S. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: effects of pH and index cations. Chemosphere. 57(10), 1325-1333, 2004.
National Research Council. Nuclear Wastes: Technologies for Separations and Transmutation. Washington, DC: The National Academies Press, 1996.
Ouki, S. K., Kavannagh, M. Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management and Research. 15(4), 383-394, 1997.
Parks, G. A., De Bruyn, P. L. The zero point of charge of oxides. Journal of physical chemistry. 66, 967-973, 1962.
Penners, N. H. G., Koopal, L. K. The effect of particle size on the stability of haematite (α-Fe2O3) hydrosols. Colloids and Surfaces. 28, 67-83, 1987.
Penners, N. H. G., Koopal, L. K., Lyklema, J. Interfacial electrochemistry of haematite(α-Fe2O3): homodisperse and heterodisperse sols. Colloids and Surfaces. 21, 457-468, 1986.
Pivovarov, S. Adsorption of cadmium onto hematite: temperature dependence. Journal of colloid and interface science. 234(1), 1-8, 2001.
Poston, T. M., Traub, R. J., Antonio, E. J. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs (No. PNNL-20529). Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2011.
Raji, C., Anirudhan, T. S. Batch Cr (VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Research. 32(12), 3772-3780, 1998.
Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Marti, V., Duro, L. Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematite. Journal of hazardous materials. 150(2), 279-284, 2008.
Rubio, J., Matijević, E. Interactions of metal hydrous oxides with chelating agents. I. β-FeOOH—EDTA. Journal of Colloid and Interface Science. 68(3), 408-421, 1979.
Sahai, N., Sverjensky, D. A. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data, Geochim. Geochimica et Cosmochimica Acta. 61(14), 2801-2806, 1997.
Schwertmann, U., Gasser, U., Sticher, H. Chromium for iron substitution in synthetic goethites. Geochimica et Cosmochimica Acta. 53(6), 1293-1297, 1989.
Schenck, C. V., Dillard, J. G., Murray, J. W. Surface analysis and the adsorption of Co (II) on goethite. Journal of colloid and interface science. 95(2), 398-409, 1983.
Sigg, L., Stumm, W. The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface. Colloids and Surfaces. 2(2), 101-117, 1981.
Smith, J. M. Chemical Engineering Kinetics. McGraw-Hill. 1981.
Stumm, W. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems. John Wiley & Son Inc., 1992.
Stumm, W., Lee, G. F. Oxygenation of ferrous iron. Industrial and Engineering Chemistry. 53(2), 143-146, 1961.
Tejedor-Tejedor, M. I., Anderson, M. A. " In situ" ATR-Fourier transform infrared studies of the goethite (α-FeOOH)-aqueous solution interface. Langmuir. 2(2), 203-210, 1986.
Tewari, P. H., McLean, A.W. Temperature dependence of point of zero charge of alumina and magnetite. Journal of Colloid and Interface Science. 40(2), 267-272, 1972.
Ishikawa, T., Kondo, Y., Yasukawa, A., Kandori, K. Formation of magnetite in the presence of ferric oxyhydroxides. Corrosion science. 40(7), 1239-1251, 1998.
Torrent, J., Barron, V., Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Science Society of America Journal. 54(4), 1007-1012, 1990.
Trivedi, P., Axe, L., Dyer, J. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 191(1), 107-121, 2001.
Waite, T. D., Morel, F. M. M. Morel. Photoreductive dissolution of colloidal iron oxides in natural waters. Environmental Science Technology. 18 (11), 860–868, 1984.
Waite, T. D., Morel, F. M. M. Photoreductive dissolution of colloidal iron oxide: Effect of citrate. Journal of Colloid and Interface Science. 102(1), 121-137, 1984.
Wilson, T. R. S. Salinity and major elements of sea water. Chemical Oceanography, 2nd edition, Academic Press, London, New York. 1, 65-413, 1975.
Wooyong, U., Charalambos, P. Sorption mechanisms of Sr and Pb on zeolitized tuffs from the Nevada test site as a function of pH and ionic strength. American Mineralogist. 88(11-12), 2028-2039, 2003.
Yates, D. E, Healy, T. W. Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces. Journal of Colloid and Interface Science. 52(2), 222-228, 1975.
Yoon, R. H., Salman, T., Donnay, G. Predicting points of zero charge of oxides and hydroxides. Journal of Colloid and Interface Science. 70(3), 483-493, 1979.
Zelazny, L. M., Baligar, V. C., Ritchey, K. D., Martens, D. C. Ion strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: Triple-Layer Model. Soil Science Society of America Journal. 61, 784-793, 1997.
Zeltner, W. A., Anderson, M. A. Surface charge development at the goethite/aqueous solution interface: effects of CO2 adsorption. Langmuir. 4(2), 469-474, 1988.
Zhang, Y., Charlet, L., Schindler, P.W. Adsorption of protons, Fe(II) and Al(III) on lepidocrocite (γ-FeOOH). Colloids and Surfaces. 63(3-4), 259-268, 1992.
田福助,基礎物理化學 下冊,台北圖書有限公司,台北市,1989。
陳嘉和,「流體化床結晶技術在含氟廢水處理之應用」, 長庚大學化學工程研究所碩士論文,2001。
孫衛玲,倪普仁,泥沙吸附重金屬研究中的若干關鍵問題,泥沙研究,6 期,2002。

  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-10起公開。

  • 如您有疑問,請聯絡圖書館