進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2711201512115300
論文名稱(中文) 訊號傳遞時間量測應用於室內定位系統之評估
論文名稱(英文) Assessment of the signal time-of-arrival measurement for an indoor positioning system
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 104
學期 1
出版年 105
研究生(中文) 傅駿淮
研究生(英文) Chun-Huai Fu
學號 P46024304
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 指導教授-詹劭勳
口試委員-何慶雄
口試委員-王大中
中文關鍵字 室內定位系統  無線區域網路  時間到達法  軟體定義無線電 
英文關鍵字 Indoor Positioning System  IEEE802.11  Time-of-arrival  Software Defined Radio 
學科別分類
中文摘要 目前,室外導航定位服務主要仰賴全球衛星導航系統(Global Navigation Satellite System, GNSS),室內導航定位服務主要藉由無線感測網路(Wireless Sensor Network, WSN)提供相關量測依據,相較於大範圍且已發展成熟的室外導航定位系統,室內定 位系統因小範圍的空間,必須提供更高且可靠的定位精確度。常見的室內定位系統定 位方法有兩種,一種是基於訊號強度以訊號衰減模型決定距離或以環境特徵比對法 (Fingerprinting approach)與資料庫做比較,另一種是基於訊號傳遞時間以到達時間法 (Time-of-arrival method)決定傳輸距離。而隨著個人化智慧行動裝置的普及,無線區域 網路(Wireless Local Area Network, WLAN)所使用的 Wi-Fi (IEEE802.11)協定已廣泛地 使用且存在於現有的硬體設備中,因此本論文將選擇無線區域網路頻段的訊號作為室 內定位系統的定位觀測量。
基於訊號強度的定位演算法使用於不同環境時,必須消耗大量人力與時間,依據實驗 蒐集結果重新建立資料庫,以到達時間作為定位演算法的定位結果將受限於 1)使用者 與參考站的幾何位置以及 2)時間觀測量的品質。因此,本論文將重心放在以訊號傳遞 時間量於室內定位系統的效能上,利用基於軟體無線電(Software-Defined Radio, SDR) 的平台設置時間同步架構於使用者及參考站,透過一個外接穩定時鐘震盪器及 GPS的同步脈衝訊號(1PPS)設置時間同步機制,並以零基線實驗評估訊號傳遞時間量,以 實現到達時間法於室內定位系統之效能。另外,本論文以遞迴最小平方法(recursive least squares method, RLS)及非迭代平方解法(non-iterative quadrature equation solution method, Non-iterative)的模擬分析並應用於小範圍到達時間法的室內定位系統。最後, 進一步於室內環境下以量測之訊號傳遞時間量做定位結果分析,兩種定位演算法將可 達到約 0.2 公尺的時間觀測量精確度與 0.4 公尺以下的定位精確度,此外也藉由三種 實驗設置,提供更完整訊號傳遞時間量於室內定位系統之評估。
英文摘要 Today’s outdoor positioning services rely on the global navigation satellite system (GNSS), while indoor positioning services provide measurements using a wireless sensor network (WSN). Although outdoor positioning systems can now cover large areas, indoor positioning systems (IPS) require higher and more reliable positioning accuracy due to the small areas they operate within. There are two main methods used with IPS. The first positioning method is based on the received signal strength (RSS), and takes advantage of the signal propagation model or uses a fingerprinting approach to determine the position. The second positioning method is based on the time-of-arrival (TOA) of the signal, and this estimates the pseudorange to determine the transmitter location by multilateration. However, both of these approaches have their drawbacks.

The positioning method based on RSS requires a great deal of effort and time to build the databases needed for different environments. In contrast, the results of the positioning method based on TOA are limited with regard to 1) the relative geometry of the user and reference stations, and 2) the quality of the timing measurement. The current study thus focuses on the performance of the timing measurement and uses a software-defined radio(SDR) platform to set the time synchronization scheme based on the stable external oscillator and one pulse per second (1PPS) signal at both user and reference stations to estimate the performance of the timing measurements of the zero baseline test. In addition, two proposed TOA positioning algorithms are used in this work, the recursive least square (RLS) method and the non-iterative quadrature equation solution (non-iterative) method. Finally, an indoor positioning experiment is conducted to collect the time measurements. The positioning results can achieve a range error of 0.2 meters and position error of 0.4 meters under the dilution of precision (DOP) value of 1.225. Moreover, we carry out three schemes of the experiment to provide the entire assessment of the signal TOA measurement for an indoor positioning system.
論文目次 摘要 I
ABSTRACT III
ACKNOWLEDGEMENTS V
LIST OF CONTENTS VI
LIST OF TABLES VIII
LIST OF FIGURES IX
Chapter 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Previous Work 2
1.3 Objectives 3
1.4 Thesis organization 4
Chapter 2 TOA INDOOR POSITIONING SYSTEMS AND METHODS 5
2.1 Time-Of-Arrival Multilateration 6
2.2 The Recursive Least Squares Method 8
2.3 The Non-Iterative Quadrature Equation Solution Method 13
2.4 Interim Summary 18
Chapter 3 TIMING SYNCHRONIZATION 19
3.1 Rubidium Clock and 1PPS Signal 20
3.2 Timing Measurement 21
3.3 Interim Summary 25
Chapter 4 EXPERIMENTAL RESULTS AND ANALYSES 26
4.1 Simulation of TOA Positioning Algorithms 27
4.2 Zero Baseline Test 32
4.3 Experiment of TOA Indoor Positioning 37
4.4 Interim Summary 58
Chapter 5 CONCLUSIONS AND FUTURE WORK 59
5.1 Conclusions 59
5.2 Future work 60
REFERENCES 61
參考文獻 【1】
Goswami, S., Indoor Location Technologies, Milpitas, CA, 2013
【2】
Liu, H., et al. "Survey of wireless indoor positioning techniques and systems." Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 37.6 (2007): 1067-1080.
【3】
Kaveh, P., Li, X., and Mäkelä, J-P,. "Indoor geolocation science and technology." Communications Magazine, IEEE 40.2 (2002): 112-118.
【4】
Chahé, N., Despins, C., and Affes, S., "Indoor geolocation with received signal strength fingerprinting technique and neural networks." Telecommunications and Networking-ICT 2004. Springer Berlin Heidelberg, 2004. 866-875.
【5】
Sahibsingh A, D., "The distance-weighted k-nearest-neighbor rule." Systems, Man and Cybernetics, IEEE Transactions on 4 (1976): 325-327.
【6】
Kamol, K., and Prashant, K., "Properties of indoor received signal strength for WLAN location fingerprinting." Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual International Conference on. IEEE, 2004.
【7】
Cho, H., et al. "Performance analysis of location estimation algorithm in ZigBee networks using received signal strength." Advanced Information Networking and Applications Workshops, 2007, AINAW'07. 21st International Conference on. Vol. 2. IEEE, 2007.
【8】
Ciurana, M.; Barceló-Arroyo, F., and Martín-Escalona, I., "Comparative performance evaluation of IEEE 802.11 v for positioning with time-of-arrival." Computer Standards & Interfaces 33.3 (2011): 344-349.
【9】
Kristoph, K., and Scholl, G., "Deriving 2D TOA/TDOA IEEE 802.11 g/n/ac location accuracy from an experimentally verified fading channel model." Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on. IEEE, 2013.
【10】
Christian, H., and Willmann, J., "Four-way TOA and software-based trilateration of IEEE 802.11 devices." Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on. IEEE, 2008.
【11】
GordonR,A.,"Thetime-of-arrivalinquantummechanicsI.Formalconsiderations." Annals of physics 53.2 (1969): 253-285.
【12】
Tsai, W-M., Hsu, L-T., Jan, S-S., The Development of an Indoor Location Based Service Test Bed, Proceedings of ION GNSS 2009, Savannah, GA, September 2009, pp. 1025-1033.
【13】
Hsu,L-T.,Tsai,W-M.,Jan,S-S.,DevelopmentofaRealTimeIndoorLocationBased Service Test Bed, Proceedings of ION GNSS 2010, Portland, OR, September 2010, pp. 1175-1183.
【14】
Xiao, S-C., Hsu, L-T., Jan, S-S., Database Calibration Algorithms of an Indoor Positioning System Based on the Fingerprint Method, Proceedings of ION GNSS 2011, Portland, OR, September 2011, pp. 2876-2884.
【15】
Ali,A-A,andA.S.Omar."Time-of-arrivalestimationforWLANindoorpositioning systems using Matrix Pencil Super Resolution Algorithm." Proceedings of the 2nd Workshop on Positioning, Navigation and Communication, WPNC. Vol. 5. 2005.
【16】
IEEE 802.11-2012, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.”, February 2012.
【17】
“Compliance & Regulatory Info Sheet Nr. 1/ Wireless Medical Devices & Connected Healthcare,” CETECOM, July 2014, From https://www.cetecom.com/fileadmin/files/images/NEWSLETTER/NEWSLETTER_2014/CETECOM_Medical_Info_Sheets_1-4_July_2014.pdf
【18】
Miklavcic, P., "On the number of non-overlapping channels in the IEEE 802.11 WLANs operating in the 2.4 GHz band." Elektrotehniski Vestnik 81.3 (2014): 148-152.
【19】
Barry, J-R., et al. "Simulation of multipath impulse response for indoor wireless optical channels." Selected Areas in Communications, IEEE Journal on 11.3 (1993): 367-379.
【20】
DonaldW,M.,"Analgorithmforleast-squaresestimationofnonlinearparameters." Journal of the Society for Industrial & Applied Mathematics 11.2 (1963): 431-441.
【21】
Foy, W-H., "Position-location solutions by Taylor-series estimation." IEEE Transactions on Aerospace and Electronic Systems (1976): 187-194.
【22】
Chan,Y.T.,andHo,K.C.,"Asimpleandefficientestimatorforhyperboliclocation." Signal Processing, IEEE Transactions on 42.8 (1994): 1905-1915.
【23】
Zhang,H.,etal."AnimprovedTaylorseriesbasedlocationalgorithmforIEEE802.15. 4a channels." Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on. IEEE, 2011.
【24】
Wang, X., Wang Z., and O’Dea B., "A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation." IEEE Transactions on Vehicular Technology 52.1 (2003): 112-116.
【25】
B. Bloessl. An ieee 802.11 a/g/p transceiver for gnu radio. https://github.com/bastibl/gr-ieee802-11.
【26】
B. Bloessl, et al. "An IEEE 802.11 a/g/p OFDM Receiver for GNU Radio." Proceedings of the second workshop on Software radio implementation forum. ACM, 2013.
【27】
Stefan, S. GNU Radio Radar Toolbox.
https://grradar.wordpress.com/author/stwunsch.
【28】
Jacovitti, G., & Scarano, G. (1993). Discrete time techniques for time delay estimation. Signal Processing, IEEE Transactions on, 41(2), 525-533.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw