進階搜尋


下載電子全文  
系統識別號 U0026-2708202015494300
論文名稱(中文) 銫原子中階梯型電磁誘導透明之極化效應的理論模擬
論文名稱(英文) Theoretical Simulation of Polarization Effect on a Ladder-type Electromagnetically Induced Transparency in Cesium Atoms
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 108
學期 2
出版年 109
研究生(中文) 阮氏犛犛
研究生(英文) Nguyen Thi Ly Ly
學號 L26077025
學位類別 碩士
語文別 英文
論文頁數 50頁
口試委員 指導教授-蔡錦俊
口試委員-朱淑君
口試委員-崔祥辰
口試委員-黃守仁
中文關鍵字 None 
英文關鍵字 Electromagnetically induced transparency  optical pumping  optical Bloch equation 
學科別分類
中文摘要 None
英文摘要 Electromagnetically induced transparency (EIT) is a quantum interference effect that allows light to propagate by creating a transparency window at the resonance of atoms that are usually highly absorbed. This thesis theoretically simulates the polarization and temperature dependence of the EIT spectrum of Cesium atoms on the ladder-type 6S_(1/2)-6P_(3/2)-11S_(1/2) transition. The optical Bloch-equation for the system is constructed and solved to obtain the steady-state solution of the matrix elements, which contains the coherence information between the atom and the external optical fields. The absorption coefficient can be derived from the imaginary part of susceptibility for this system. In order to study the polarization effect in the EIT system, three different polarization combinations of probe and coupling fields were applied, namely σ^+-σ^-, σ^+-π, and σ^+-σ^+.The results show that when the polarization of the two fields is changed (varied), the allowed two photon-transition paths and the reshaped population distribution of Zeeman-sublevels are the key effects of changing the EIT signal. Therefore, the EIT peak can be enhanced or reduced under different polarization combinations. The influence of temperature on the EIT signal is investigated by changing the Maxwell population distribution of the system. The temperature ranges from ultra-cold (1mK, such as the temperature in a magneto optical trap) to room temperature (300K). At ultra-cold temperature, the average speed of atoms is around 0 m/s, and the non-optical energy transform process (mainly is collision) is negligible, so the optical pumping efficiency is very high. However, at room temperature, the average speed of atoms is much larger (193.36 m/s), and the impact of collisions is great, so the optical pumping rate is very low. We found that the linewidth of the EIT signal at room temperature is narrower than the linewidth at ultra-cold temperature, while the line shape at high temperature contains additional absorption wings on both sides of the EIT signal. This is the phenomena of quantum interference. The unusual peak signal when changing polarization and temperature will provide some ideas for future experiments and applications in other fields.
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
LIST OF ABBREVIATIONS XI
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: THEORY OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY 3
2.1. Interaction of light and atoms 3
2.1.1. Deriving the EIT Hamiltonian 3
2.1.2. Density matrix 6
2.1.3. The Von Neuman Equation 8
2.1.4. Density matrix approaches to three-level system 10
2.1.5. The susceptibility of the system and absorption in EIT 12
2.2. The influent factors on EIT signal 16
2.2.1. Doppler effect in EIT 16
2.2.2. Wavelength mismatch 18
2.2.3. Transition probability and Rabi frequency 22
2.2.4. Optical pumping 25
CHAPTER 3: SIMULATION RESULT 32
3.1. Model testing 32
3.1.1 Experiment setup 32
3.1.2 Experimental and simulation result 34
3.2. Simulation results under different polarization combinations 40
3.3. Temperature dependence 45
CHAPTER 4: CONCLUSION AND SUGGESTIONS FOR FURTHER WORK 49
REFERENCES 50
參考文獻 1. K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of Electromagnetically Induced Transparency. Phy. Rev. Lett., 1991. 66(20): p. 2593-2596.
2. J. E. Field, K. H. Hahn, and S. E. Harris, Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor. Phy. Rev. Lett., 1991. 67(22): p. 3062-3065.
3. D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically induced transparency. Phys. Rev. A, 2000. 62(5): p. 053802.
4. Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type electromagnetically induced transparency with optical pumping effect. Phys. Rev. A, 2013. 87(3): p. 033402
5. Shepherd, S., D. J. Fulton, and M. H. Dunn, Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium. Phys. Rev. A, 1996. 54(6): p. 5394-5399.
6. Moon, H. S., L. Lee, and L. B. Kim, Double-resonance optical pumping of Rb atoms. J. Opt. Soc. Am. B, 2007. 24(9): p. 2157-2164.
7. Moon, H. S. and H. R. Noh, Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S(1/2)-5P(3/2)-5D(5/2) transition of Rb-87 atoms. Phys. Rev. A, 2011. 84(3): p. 033821.
8. Sakurai, J. J. and J. Napolitano, Modern Quantum Mechanics. 2 ed. 2017, Cambridge: Cambridge University Press.
9. Geabanacloche, J., Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically Induced Transparency in Ladder-Type Inhomogeneously Broadened Media - Theory and Experiment. Phys. Rev. A, 1995. 51(1): p. 576-584.
10. Foot, C. J., Atomic physics. 2005: Oxford University Press.
11. Farrell, P. M. and W. R. Macgillivray, On the Consistency of Rabi Frequency Calculations. J. Phys. A. Math. Gen., 1995. 28(1): p. 209-221.
12. Krainskamiszczak, M., Alignment and Orientation by Optical-Pumping with Pi-Polarized Light. J. Phys. B. At. Mol. Opt., 1979. 12(4): p. 555-566.
13. DiBerardino, D., C. E. Tanner, and A. Sieradzan, Lifetime measurements of cesium 5d(2)D(5/2,3/2) and 11s(2)S(1/2) states using pulsed-laser excitation. Phys. Rev. A, 1998. 57(6): p. 4204-4211.
14. Yang, B. D., J. Gao, T. C. Zhang, and J. M. Wang, Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system. Phys. Rev. A, 2011. 83(1): p. 013818.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw