進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708202015220900
論文名稱(中文) 利用3D列印快速製造創新教具導入微流體課程對學生之學習動機與創造力之研究
論文名稱(英文) Integrating rapid fabrication of 3D printed innovative teaching aids into microfluidics course and its impact on student’s creativity and learning motivation
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 李耀庭
研究生(英文) Yao-Ting Li
學號 P86071024
學位類別 碩士
語文別 英文
論文頁數 85頁
口試委員 指導教授-涂庭源
口試委員-莊漢聲
口試委員-郭旭展
中文關鍵字 3D列印  微流體  快速製造  透明  生物相容性  微流體教育  學習動機  創造力 
英文關鍵字 3D printing  microfluidics  rapid fabrication  transparency  biocompatibility  microfluidics education  learning motivation  creativity 
學科別分類
中文摘要 微流體具有尺寸小、體積小、消耗小等特點受到廣泛的運用。軟光刻技術(Soft lithograhy)為常見之微流體裝置製造方法,由於該製程過程複雜繁瑣、技術門檻高、模具相對昂貴,導致許多替代方法產生。近年來,3D列印被大量用於製造微流體裝置,因為3D列印具有簡單快速且能夠製造複雜三維結構的能力,但能夠製造出透明且具生物相容性之3D列印為少數,加上鮮少文獻針對3D列印的製造時間進行優化探討。另一方面,目前在微流體教育研究的對象多為高中以下學生,利用簡單的設備將微流體裝置放大以模擬其現象,而且沒有針對學生之學習成效進行量化分析。
在本研究中,我們透過調整列印參數降低裝置之製造時間,高度6毫米之裝置製造時間從4小時縮減至半小時並保有其透明度及功能,並證明該參數所製造之裝置具有生物相容性,再將該技術應用至微流體教具製作。針對「生物微機電製程與應用」碩士班課程進行改良設計,加入動手做活動及問題導向式學習,採用單組前後測 設計配合學習動機量表和陶倫斯創造力測驗成人適用精簡版,量化分析學生之學習動機與創造力表現。從結果發現,經過創新實驗教學後學生之學習動機(工作價值、自我效能)、創造力表現(流暢性、原創性、變通性)在前後測比較中均有顯著進步。
英文摘要 Microfluidics are widely used due to small size, small volume, and low consumption. Soft lithography is a common method of manufacturing microfluidic devices. Due to the complex and cumbersome process, high technical threshold, and relatively expensive molds, many alternative methods have been developed. In recent years, 3D printing has been widely used in the manufacture of microfluidic devices, because 3D printing is simple and fast, and has the ability to produce complex three-dimensional structures. However, it is not easy to fabricate a device with transparency and biocompatibility. There are few literatures focus on optimize the manufacturing time of 3D printing. On the other hand, the current research objects in microfluidics education are mostly senior high school students or younger, using simple equipment to simulate microfluidics phenomena, and there is no quantitative analysis of students' learning outcomes. In this study, we reduced the fabrication time of the device by modifying the printing parameters. The fabrication time of a 6 mm high device was reduced from 4 hours to half an hour and maintained its transparency and function. We also proved that the device printed by the modified parameters is biocompatible. Improve the design of the master course of "Fabrications and Applications of BioMEMS", add hands-on activities and introduce problem-based learning, adopt one-group pretest-posttest experimental design with the learning motivation scale and the abbreviated torrance test for adults (ATTA) to evaluate students' learning motivation (work value, self-efficacy), creativity performance (fluency, originality, flexibility), and academic performance. From the results, it is found that the students' learning motivation, and creativity have been significantly improved after the participation in the experimental course.
論文目次 摘要 I
Abstract II
致謝 IV
Contents V
List of Table VIII
List of Figures IX
List of Abbreviations XI
Chapter 1. Introduction 1
1.1 Microfluidics 1
1.1.1 History of microfluidics 1
1.1.2 Why microfluidics? 2
1.1.3 Microfluidics applications 3
1.2 Fabrication of microfluidic device 6
1.2.1 Traditional fabrications based on lithography 6
1.2.2 Rapid prototyping based on digital manufacturing 8
1.3 3D printed microfluidic device 11
1.3.1 Concepts of 3D printing 11
1.3.2 Fused deposition modeling 12
1.3.3 Multi jet modeling 13
1.3.4 Stereolithography 14
1.4 Applying microfluidics to education 18
1.4.1 Difficulties in microfluidics education 18
1.4.2 Importance of learning motivation and creativity 19
1.4.3 Introduce STEM to microfluidics education 20
1.4.4 Learning microfluidics through hands-on activities 21
1.4.5 Project-based learning for innovation of microfluidics 21
1.5 Motivation 23
1.5.1 The critical issues 23
1.5.2 Specific aims 24
Chapter 2. Materials and Methods 26
2.1 Soft lithography 26
2.1.1 Device fabrication 26
2.1.2 Device design 27
2.2 Laser cutting microfluidic device 27
2.2.1 Device fabrication 27
2.2.2 Device design 28
2.3 3D printed microfluidic device 28
2.3.1 3D printer 28
2.3.2 Photoresin preparation 29
2.3.3 Surface treatment 29
2.3.4 3D printing procedure 29
2.3.5 3D printing parameters 30
2.3.6 Device designs 31
2.4 Particle preparation 36
2.5 Microfluidic setup and operation 37
2.6 Cell culture and fluorescent staining 38
2.7 Scanning electron microscopy (SEM) 38
2.8 Surface roughness quantification 39
2.9 Innovative experimental course design 39
2.9.1 Curriculum design 39
2.9.2 Hands-on design 41
2.9.3 Participants 42
2.9.4 Evaluation tools 43
Chapter 3. Results 45
3.1 Quality assessment of 3D printed structures 45
3.1.1 Channel surface roughness quantification 45
3.1.2 Exposure time 46
3.1.3 Separation distance 47
3.1.4 Slides per layer 48
3.1.5 Final printing parameters 49
3.1.6 x-y resolution limit 50
3.1.7 Channel height limit 51
3.1.8 Cytotoxicity and cell adhesion 52
3.2 Hands-on sessions 53
3.3 Group discussion and presentation 61
3.4 Students’ projects 62
3.5 Learning motivation 63
3.6 Creativity 64
3.6.1 Fluency 65
3.6.2 Originality 65
3.6.3 Elaboration 66
3.6.4 Flexibility 66
3.6.5 Creativity index 67
Chapter 4. Discussion 68
4.1 Channel surface roughness 68
4.2 Limitation of DLP 68
4.3 Fast post-processing for 3D printed device cell experiments 69
4.4 Hands-on sessions design 70
4.4.1 Selection of observation tools 70
4.4.2 Selection of classic microfluidic devices 70
4.5 Student final projects 73
4.6 The relationship between innovative experiential course and students' learning outcome 74
4.7 Students’ feedback 75
Chapter 5. Conclusion 77
Chapter 6. Future works 78
Reference 79
參考文獻 1. Folch, A. Introduction to BioMEMS. Introduction to BioMEMS (2016). doi:10.1201/b12263
2. Judy, J. W. Microelectromechanical systems (MEMS): Fabrication, design and applications. Smart Mater. Struct. 10, 1115–1134 (2001).
3. Stone, H. A., Stroock, A. D. &Ajdari, A. ENGINEERING FLOWS IN SMALL DEVICES. Annu. Rev. Fluid Mech. 36, 381–411 (2004).
4. Yetisen, A. K., Akram, M. S. &Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 13, 2210–2251 (2013).
5. Huh, D., Hamilton, G. A. &Ingber, D. E. From 3D cell culture to organs-on-chips. Trends in Cell Biology 21, 745–754 (2011).
6. Ewing, A. G., Wallingford, R. A. &Olefirowicz, T. M. Capillary Electrophoresis. Anal. Chem. 61, (1989).
7. Le, H. P. Progress and trends in ink-jet printing technology. (1998).
8. Inglis, D. W., Riehn, R., Austin, R. H. &Sturm, J. C. Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 85, 5093–5095 (2004).
9. Bluemke, K. et al. Detection of circulating tumor cells in peripheral blood of patients with renal cell carcinoma correlates with prognosis. Cancer Epidemiol. Biomarkers Prev. 18, 2190–2194 (2009).
10. Mohamed, H., Turner, J. N. &Caggana, M. Biochip for separating fetal cells from maternal circulation. J. Chromatogr. A 1162, 187–192 (2007).
11. Antfolk, M. &Laurell, T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood – A review. Analytica Chimica Acta 965, 9–35 (2017).
12. Hou, H. W. et al. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1–8 (2013).
13. Walker, G. M., Monteiro-Riviere, N., Rouse, J. &O’Neill, A. T. A linear dilution microfluidic device for cytotoxicity assays. Lab Chip 7, 226–232 (2007).
14. Lee, W.Bin et al. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method. Biosens. Bioelectron. 87, 669–678 (2017).
15. Kang, T. G., Singh, M. K., Anderson, P. D. &Meijer, H. E. H. A chaotic serpentine mixer efficient in the creeping flow regime: From design concept to optimization. Microfluid. Nanofluidics 7, 783–794 (2009).
16. Yang, C. G., Wu, Y. F., Xu, Z. R. &Wang, J. H. A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 11, 3305–3312 (2011).
17. Lee, C. Y., Wang, W. T., Liu, C. C. &Fu, L. M. Passive mixers in microfluidic systems: A review. Chemical Engineering Journal 288, 146–160 (2016).
18. Lim, T. W. et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11, 100–103 (2011).
19. Martin, J. C. &Swartzendruber, D. E. Time: A new parameter for kinetic measurements in flow cytometry. Science (80-. ). 207, 199–201 (1980).
20. Griffin, S., Taggart, C. C., Greene, C. M., O’Neill, S. &McElvaney, N. G. Neutrophil elastase up-regulates human β-defensin-2 expression in human bronchial epithelial cells. FEBS Lett. 546, 233–236 (2003).
21. Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science (80-. ). 306, 1194–1198 (2004).
22. Rettig, J. R. &Folch, A. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77, 5628–5634 (2005).
23. Li, W. et al. Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 4, 258 (2008).
24. Köster, S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008).
25. Um, E., Lee, D. S., Pyo, H. B. &Park, J. K. Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid. Nanofluidics 5, 541–549 (2008).
26. Xu, Q. et al. Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow‐Focusing Device for Controlled Drug Delivery. Small 5, 1575–1581 (2009).
27. Hung, L. H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6, 174–178 (2006).
28. THOMPSON, L. F. An Introduction to Lithography. in Introduction to Microlithograhy 1–13 (1983). doi:10.1021/bk-1983-0219.ch001
29. Garra, J. et al. Dry etching of polydimethylsiloxane for microfluidic systems. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 20, 975–982 (2002).
30. Grosse, A., Grewe, M. &Fouckhardt, H. Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J. Micromechanics Microengineering 11, 257–262 (2001).
31. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. &Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).
32. Naderi, A., Bhattacharjee, N. &Folch, A. Digital Manufacturing for Microfluidics. (2019). doi:10.1146/annurev-bioeng-092618
33. Guckenberger, D. J., DeGroot, T. E., Wan, A. M. D., Beebe, D. J. &Young, E. W. K. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15, 2364–2378 (2015).
34. Ontiveros, F. &Mcdowell, J. R. Ultra-thin Microfluidic Devices Built via Thermal Lamination. Biol. Fac. Publ. Paper 28 (2016).
35. Kinahan, D. J., Julius, L. A. N., Schoen, C., Dreo, T. &Ducree, J. Automated DNA purification and multiplexed lamp assay preparation on a centrifugal microfluidic ‘Lab-on-a-Disc’ platform. in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 2018-January, 1134–1137 (Institute of Electrical and Electronics Engineers Inc., 2018).
36. Martínez-López, J. I., Mojica, M., Rodríguez, C. A. &Siller, H. R. Xurography as a rapid fabrication alternative for point-of-care devices: Assessment of passive micromixers. Sensors (Switzerland) 16, 705 (2016).
37. Patko, D. et al. Microfluidic channels laser-cut in thin double-sided tapes: Cost-effective biocompatible fluidics in minutes from design to final integration with optical biochips. Sensors Actuators, B Chem. 196, 352–356 (2014).
38. Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding - IOPscience. Available at: https://iopscience.iop.org/article/10.1088/0960-1317/26/10/107001/meta. (Accessed: 22ndMay2020)
39. Wan, A. M. D., Sadri, A. &Young, E. W. K. Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves. Lab Chip 15, 3785–3792 (2015).
40. Bhattacharjee, N., Urrios, A., Kang, S. &Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab on a Chip 16, 1720–1742 (2016).
41. Morgan, A. J. L. et al. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. PLoS One 11, e0152023 (2016).
42. Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V. &Cronin, L. Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’ reactionware devices. Lab Chip 12, 3267–3271 (2012).
43. Bishop, G. W. et al. 3D-Printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated prussian blue nanoparticle-modified electrodes. Anal. Chem. 87, 5437–5443 (2015).
44. Zhang, J. M., Li, E. Q., Aguirre-Pablo, A. A. &Thoroddsen, S. T. A simple and low-cost fully 3D-printed non-planar emulsion generator. RSC Adv. 6, 2793–2799 (2016).
45. Erkal, J. L. et al. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014).
46. Sochol, R. D. et al. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16, 668–678 (2016).
47. Waheed, S. et al. 3D printed microfluidic devices: Enablers and barriers. Lab on a Chip 16, 1993–2013 (2016).
48. Bertsch, A., Heimgartner, S., Cousseau, P. &Renaud, P. Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1, 56–60 (2001).
49. Lee, W. et al. 3D-Printed Microfluidic Device for the Detection of Pathogenic Bacteria Using Size-based Separation in Helical Channel with Trapezoid Cross-Section. Sci. Rep. 5, 7717 (2015).
50. Au, A. K., Lee, W. &Folch, A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14, 1294–1301 (2014).
51. Urrios, A. et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16, 2287–2294 (2016).
52. Gopalan, V., Bakar, J. A. A., Zulkifli, A. N., Alwi, A. &Mat, R. C. A review of the motivation theories in learning. in AIP Conference Proceedings 1891, 20036 (2017).
53. DiSerio, Á., Ibáñez, M. B. &Kloos, C. D. Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 68, 586–596 (2013).
54. Pintrich, P. R. The role of motivation in promoting and sustaining self-regulated learning. Int. J. Educ. Res. 31, 459–470 (1999).
55. Bolliger, D. U., Supanakorn, S. &Boggs, C. Impact of podcasting on student motivation in the online learning environment. Comput. Educ. 55, 714–722 (2010).
56. Labuske, K. &Streb, J. Technological creativity and cheap labour? Explaining the growing international competitiveness of German mechanical engineering before World War I. Ger. Econ. Rev. 9, 65–86 (2008).
57. Razzouk, R. &Shute, V. What Is Design Thinking and Why Is It Important? Rev. Educ. Res. 82, 330–348 (2012).
58. Gardner, H. Multiple Intelligences: New Horizons in Theory and Practice. (2008).
59. Carroll, J. B. &Guilford, J. P. The Nature of Human Intelligence. Am. Educ. Res. J. 5, 249 (1968).
60. Yakman, G. &Lee, H. Exploring the Exemplary STEAM Education in the U.S. as a Practical Educational Framework for Korea. J. Korean Assoc. Sci. Educ. 32, 1072–1086 (2012).
61. Danahy, E. et al. LEGO-based robotics in higher education: 15 years of student creativity. Int. J. Adv. Robot. Syst. 11, 27 (2014).
62. Yang, C. W. T., Ouellet, E. &Lagally, E. T. Using Inexpensive Jell-O Chips for Hands-On Microfluidics Education. Anal. Chem. 82, 5408–5414 (2010).
63. Nguyen, D., McLane, J., Lew, V., Pegan, J. &Khine, M. Shrink-film microfluidic education modules: Complete devices within minutes. Biomicrofluidics 5, 022209 (2011).
64. Cai, L., Wu, Y., Xu, C. &Chen, Z. A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract. J. Chem. Educ. 90, 232–234 (2013).
65. Morton, J. A. S. &Bridle, H. Student-led microfluidics lab practicals: Improving engagement and learning outcomes. Biomicrofluidics 10, (2016).
66. Monaghan, T., Harding, M. J., Harris, R. A., Friel, R. J. &Christie, S. D. R. Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab Chip 16, 3362–3373 (2016).
67. Rogers, C. I., Qaderi, K., Woolley, A. T. &Nordin, G. P. 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9, 016501 (2015).
68. Gong, H., Woolley, A. T. &Nordin, G. P. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16, 2450–2458 (2016).
69. Ji, Q. et al. A Modular Microfluidic Device via Multimaterial 3D Printing for EmuJi, Q., Zhang, J. M., Liu, Y., Li, X., Lv, P., Jin, D., &Duan, H. (2018). A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation. Scientific Reports, 8(1), 479. Sci. Rep. 8, 4791 (2018).
70. Shallan, A. I., Smejkal, P., Corban, M., Guijt, R. M. &Breadmore, M. C. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Anal. Chem. 86, 3124–3130 (2014).
71. Lee, Y.-S., Bhattacharjee, N. &Folch, A. 3D-printed Quake-style microvalves and micropumps. Lab Chip 18, 1207–1214 (2018).
72. Kuo, A. P. et al. High‐Precision Stereolithography of Biomicrofluidic Devices. Adv. Mater. Technol. 4, 1800395 (2019).
73. Gong, H., Bickham, B. P., Woolley, A. T. &Nordin, G. P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 17, 2899–2909 (2017).
74. Beauchamp, M. J., Nielsen, A.V., Gong, H., Nordin, G. P. &Woolley, A. T. 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers. Anal. Chem. 91, 7418–7425 (2019).
75. Biocompatible PEGDA Resin for 3D Printing. ACS Appl. Bio Mater. (2020). doi:10.1021/acsabm.0c00055
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw