進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708202011175000
論文名稱(中文) 含雙色胺酸功能區氧化還原酶在T細胞活化及增生中扮演的調控性角色
論文名稱(英文) The Regulatory Role of WW Domain-Containing Oxidoreductase in T cell Activation and Proliferation
校院名稱 成功大學
系所名稱(中) 醫學檢驗生物技術學系
系所名稱(英) Department of Medical Laboratory Science and Biotechnology
學年度 108
學期 2
出版年 109
研究生(中文) 許翰誠
研究生(英文) Han-Cheng Hsu
學號 T36074018
學位類別 碩士
語文別 英文
論文頁數 81頁
口試委員 指導教授-徐麗君
口試委員-詹明修
口試委員-徐婕琳
中文關鍵字 含雙色胺酸功能區氧化還原酶  T細胞 
英文關鍵字 WW Domain-Containing Oxidoreductase  T cell 
學科別分類
中文摘要 T細胞調控的免疫反應對於人體是重要的,藉由對先天以及後天性免疫的調控能消滅惡性細胞的增生或者是抵抗外來病原入侵。而T細胞活化及增生過程中,T cell receptor (TCR)接收到刺激而引發的訊息傳遞是關鍵性的過程。因此任何能調控此訊息傳遞的因素都是值得去探討及研究的。含雙色胺酸功能區氧化還原酶(WW domain-containing oxidoreductase),簡稱WWOX或WOX1,有許多重要的生理意義,包括腫瘤抑制蛋白的角色、調控胚胎發育、神經發育及發展、調節生物體內的代謝作用,而目前發現WWOX對於免疫系統似乎有所調控。近幾年我們實驗室團隊發現Wwox缺少(Wwox-/-)的小鼠,其thymocyte的分化及發育有嚴重的缺失。但是在這樣的小鼠體內,依然能在血液中發現成熟的T細胞,而這些T細胞在缺少Wwox後,是否和含有Wwox (Wwox+/+)的T細胞在接收到刺激後具有同樣的特性,這部分的研究是缺乏的。因此我們探討WWOX在T細胞活化及增生中扮演的角色。我們利用全身缺少Wwox的小鼠以及專一性在T細胞中缺少Wwox的小鼠(Wwoxfl/fl Lck-Cre)進行實驗。在實驗中將小鼠的脾臟取出並製作成splenocyte suspension且利用抗體刺激T細胞並觀察。透過propidium iodide staining的分析方式去探討細胞的情況。結果顯示刺激T刺激60小時後,Wwox-/- 有較多細胞的死亡因此我的研究中發現了WWOX對於T細胞調控的活化反應,似乎是扮演一種調控性的角色而能夠維持免疫反應的平衡。另外也發現WWOX在活化的T細胞中對於ROS的調控也扮演了重要的清除者。而針對WWOX對於Lck的調控,以及如何清除ROS則需要進一步的探討。
英文摘要 T cell-mediated responses are a central component in immune system for eliminating pathogens and malignant cells. T cell receptor (TCR) signaling is crucial for T cell activation, proliferation, and differentiation. We recently showed that tumor suppressor WW domain-containing oxidoreductase (WWOX) plays an important role in thymocyte development. However, whether WWOX controls TCR signaling for regulating T cell activation remains unknown. By propidium iodide staining, after 60-hr stimulation, increased cell death were observed in Wwox-/- splenocytes as compared with Wwox+/+ splenocytes. Similar results were examined using a T cell-specific Wwox knock-out mouse model. To further investigate the molecular mechanism by which WWOX regulates TCR signaling, protein phosphorylation after TCR triggering was detected in mouse splenic T cells and human Jurkat T cell line. In conclusion, our data suggest that loss of WWOX expression modulates TCR signal for regulation of TCR signaling in Jurkat T cells and cell apoptosis in murine T cells. How WWOX regulates TCR signaling will be delineated in the future.
論文目次 中文摘要 III
英文摘要 V
Acknowledgement VII
總目錄 VIII
Figure index XII
Introduction 1
TCR-mediated signaling cascade 1
The role of ROS in T cell-mediated response 2
WW domain-containing oxidoreductase 3
Physiological functions of WWOX 4
The role of WWOX in immune system 4
Research objective 5
Materials and Methods 6
A. Materials 6
A-1 Mice 6
A-2 Cell line 7
A-2 Reagents and kits 7
A-3 Antibodies 9
A-4 shRNA clones (purchased from RNAi core) 11
A-5 Consumables 12
A-6 Instruments 13
B. Methods 14
B-1 Cell culture 14
B-2 Preparation of lentiviral shRNA-mediated knockdown cells 16
B-3 Flow cytometric analysis 17
B-4-1 Jurkat T cell seeding and activation 27
B-4-2 Cellular protein extraction 28
B-5 Quantification and adjustment of protein content 30
B-6 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting 31
Results 34
Wwox loss causes a transient increase in splenocyte proliferation after anti-CD3 stimulation, whereas reduced proliferative activity and increased cell death are evident after stimulation for 60 hr 34
Aberrant cell proliferation in Wwox-knockout T cells is due to cell intrinsic defect(s) 34
Increased early apoptosis is determined in Wwox-/- mouse splenocytes after anti-CD3 stimulation 35
T cell activation is promptly upregulated in anti-CD3-stimulated Wwox-/- splenocytes, but declined dramatically after stimulation for 60 hr 35
Comparable levels of CD3 and CD28 expression in Wwox+/+ and Wwox-/- splenic T cells 35
Aberrant cell proliferation in Wwox-knockout T cells is not due to defective CD28-mediated co-stimulatory signal 36
Protein phosphorylation of Akt, ERK and NF-B is increased transiently in Wwox-deficient mouse splenic T cells after anti-CD3 stimulation for 15 min, whereas downregulated after stimulation for 24 hr 36
Phosphorylation of proteins in ERK, Akt-mTORc and NF-B pathways is increased transiently in WWOX-knockdown Jurkat T cells after anti-CD3 stimulation within 1 hr, but is downregulated after stimulation for 24 hr 37
Lck activation is increased in WWOX-deficient Jurkat T cells compared to the control cells 37
ROS accumulate more rapidly in Wwox-/- splenocytes after anti-CD3 stimulation for 36 hr as compared to Wwox+/+ splenocytes 38
The mitochondrial membrane potential (ΔΨm) is downregulated evidently in Wwox-deficient splenocytes after anti-CD3 stimulation for 36 hr 38
Phosphorylation of proteins in TCR signaling transiently increases in WWOX-knockdown Jurkat T cells after stimulation within 1 hr is ROS-independent 39
The downregulation of TCR signaling in WWOX-knockdown Jurkat T cells after anti-CD3 stimulation for 24 hr is ROS-dependent 39
The cell proliferation defect and increased cell death in Wwox-deficient mouse splenocytes after anti-CD3 stimulation for 60 hr are rescued by ROS elimination 40
Discussion 41
WWOX acts as a gatekeeper to regulate cell cycle progression in proliferating cells 41
The role of WWOX in alleviating excessive ROS generated in the activated immune cells 41
The regulatory role of WWOX in TCR proximal signaling 42
The regulatory role of WWOX in CSK expression 42
WWOX is crucial for the regulation of mitochondrial function in cells 43
The mitogen-activated protein kinase (MAPK) upstream signaling may be differentially regulated by WWOX after TCR stimulation in T cells 44
Treatment of NAC reduces cell proliferation of Wwox+/+ splenocytes after anti-CD3 stimulation for 60 hr 44
Defective thymocyte development in Wwox knockout mice is probably caused by strong TCR signaling 45
The role of WWOX in autoimmune diseases 46
Conclusion 47
References 48
Figures 56
Appendix 79
Appendix 1. Schematic diagram of TCR signaling cascades 79
Appendix 2. WWOX gene and protein 80
Resume 81

參考文獻 1 Brownlie, R. J. & Zamoyska, R. T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13, 257-269, doi:10.1038/nri3403 (2013).
2 Seddon, B. & Zamoyska, R. Regulation of peripheral T-cell homeostasis by receptor signalling. Curr Opin Immunol 15, 321-324, doi:10.1016/s0952-7915(03)00049-9 (2003).
3 Parsons, S. J. & Parsons, J. T. Src family kinases, key regulators of signal transduction. Oncogene 23, 7906-7909, doi:10.1038/sj.onc.1208160 (2004).
4 Salmond, R. J., Filby, A., Qureshi, I., Caserta, S. & Zamoyska, R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 228, 9-22, doi:10.1111/j.1600-065X.2008.00745.x (2009).
5 Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: Mechanisms of initiation and propagation. Trends Biochem Sci 43, 108-123, doi:10.1016/j.tibs.2017.11.008 (2018).
6 Kim, H. P., Imbert, J. & Leonard, W. J. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17, 349-366, doi:10.1016/j.cytogfr.2006.07.003 (2006).
7 Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu Rev Immunol 27, 591-619, doi:10.1146/annurev.immunol.021908.132706 (2009).
8 Furlan, G., Minowa, T., Hanagata, N., Kataoka-Hamai, C. & Kaizuka, Y. Phosphatase CD45 both positively and negatively regulates T cell receptor phosphorylation in reconstituted membrane protein clusters. J Biol Chem 289, 28514-28525, doi:10.1074/jbc.M114.574319 (2014).
9 Franchina, D. G., Dostert, C. & Brenner, D. Reactive oxygen species: Involvement in T cell signaling and metabolism. Trends Immunol 39, 489-502, doi:10.1016/j.it.2018.01.005 (2018).
10 Simeoni, L. & Bogeski, I. Redox regulation of T-cell receptor signaling. Biol Chem 396, 555-568, doi:10.1515/hsz-2014-0312 (2015).
11 Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313, doi:10.1152/physrev.00044.2005 (2007).
12 Kwon, J. et al. The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci Signal 3, ra59, doi:10.1126/scisignal.2000976 (2010).
13 Droge, W. Free radicals in the physiological control of cell function. Physiol Rev 82, 47-95, doi:10.1152/physrev.00018.2001 (2002).
14 Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84, doi:10.1016/j.biocel.2006.07.001 (2007).
15 Belikov, A. V., Schraven, B. & Simeoni, L. T cells and reactive oxygen species. J Biomed Sci 22, 85, doi:10.1186/s12929-015-0194-3 (2015).
16 Gloire, G., Legrand-Poels, S. & Piette, J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72, 1493-1505, doi:10.1016/j.bcp.2006.04.011 (2006).
17 Murphy, M. P. & Siegel, R. M. Mitochondrial ROS fire up T cell activation. Immunity 38, 201-202, doi:10.1016/j.immuni.2013.02.005 (2013).
18 Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12, 931-947, doi:10.1038/nrd4002 (2013).
19 Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 1089-1090, doi:10.1016/j.immuni.2017.06.009 (2017).
20 Bednarek, A. K. et al. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60, 2140-2145 (2000).
21 Ried, K. et al. Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 9, 1651-1663, doi:10.1093/hmg/9.11.1651 (2000).
22 Li, J., Liu, J., Ren, Y., Yang, J. & Liu, P. Common chromosomal fragile site gene WWOX in metabolic disorders and tumors. Int J Biol Sci 10, 142-148, doi:10.7150/ijbs.7727 (2014).
23 O'Keefe, L. V. et al. Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Hum Mol Genet 20, 497-509, doi:10.1093/hmg/ddq495 (2011).
24 Abu-Remaileh, M., Joy-Dodson, E., Schueler-Furman, O. & Aqeilan, R. I. Pleiotropic functions of tumor suppressor WWOX in normal and cancer cells. J Biol Chem 290, 30728-30735, doi:10.1074/jbc.R115.676346 (2015).
25 O'Keefe, L. V., Lee, C. S., Choo, A. & Richards, R. I. Tumor suppressor WWOX contributes to the elimination of tumorigenic cells in Drosophila melanogaster. PLoS One 10, e0136356, doi:10.1371/journal.pone.0136356 (2015).
26 Ludes-Meyers, J. H. et al. WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene 23, 5049-5055, doi:10.1038/sj.onc.1207680 (2004).
27 Aqeilan, R. I. et al. Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res 64, 8256-8261, doi:10.1158/0008-5472.CAN-04-2055 (2004).
28 Khawaled, S. et al. Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct Target Ther 5, 43, doi:10.1038/s41392-020-0136-8 (2020).
29 Gourley, C. et al. WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin alpha3. Cancer Res 69, 4835-4842, doi:10.1158/0008-5472.CAN-08-2974 (2009).
30 Ludes-Meyers, J. H. et al. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PLoS One 4, e7775, doi:10.1371/journal.pone.0007775 (2009).
31 Tsuruwaka, Y., Konishi, M. & Shimada, E. Loss of wwox expression in zebrafish embryos causes edema and alters Ca(2+) dynamics. PeerJ 3, e727, doi:10.7717/peerj.727 (2015).
32 Cheng, Y. Y. et al. Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3beta-mediated epileptic seizure activity in mice. Acta Neuropathol Commun 8, 6, doi:10.1186/s40478-020-0883-3 (2020).
33 Beyersdorf, N., Kerkau, T. & Hunig, T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther 4, 111-122, doi:10.2147/ITT.S61647 (2015).
34 Rahmouni, S. et al. Removal of C-terminal SRC kinase from the immune synapse by a new binding protein. Mol Cell Biol 25, 2227-2241, doi:10.1128/MCB.25.6.2227-2241.2005 (2005).
35 Parish, I. A. et al. Tissue destruction caused by cytotoxic T lymphocytes induces deletional tolerance. Proc Natl Acad Sci U S A 106, 3901-3906, doi:10.1073/pnas.0810427106 (2009).
36 Small, B. A. et al. CD8(+) T cell-mediated injury in vivo progresses in the absence of effector T cells. J Exp Med 194, 1835-1846, doi:10.1084/jem.194.12.1835 (2001).
37 Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nat Immunol 17, 574-582, doi:10.1038/ni.3392 (2016).
38 Patsoukis, N. et al. The role of metabolic reprogramming in T cell fate and function. Curr Trends Immunol 17, 1-12 (2016).
39 Buck, M. D., O'Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J Exp Med 212, 1345-1360, doi:10.1084/jem.20151159 (2015).
40 Zorova, L. D. et al. Mitochondrial membrane potential. Anal Biochem 552, 50-59, doi:10.1016/j.ab.2017.07.009 (2018).
41 Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab 23, 63-76, doi:10.1016/j.cmet.2015.11.002 (2016).
42 Salvioli, S., Ardizzoni, A., Franceschi, C. & Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411, 77-82, doi:10.1016/s0014-5793(97)00669-8 (1997).
43 Desdin-Mico, G., Soto-Heredero, G. & Mittelbrunn, M. Mitochondrial activity in T cells. Mitochondrion 41, 51-57, doi:10.1016/j.mito.2017.10.006 (2018).
44 Marchi, S. et al. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012, 329635, doi:10.1155/2012/329635 (2012).
45 Sun, Y. et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 35, 600-604, doi:10.3109/10799893.2015.1030412 (2015).
46 Plotnikov, A., Zehorai, E., Procaccia, S. & Seger, R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813, 1619-1633, doi:10.1016/j.bbamcr.2010.12.012 (2011).
47 Millea, P. J. N-acetylcysteine: multiple clinical applications. Am Fam Physician 80, 265-269 (2009).
48 Amini, A., Masoumi-Moghaddam, S., Ehteda, A. & Morris, D. L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J Exp Clin Cancer Res 33, 92, doi:10.1186/s13046-014-0092-7 (2014).
49 Sato, N. et al. N-Acetyl cysteine (NAC) inhibits proliferation, collagen gene transcription, and redox stress in rat palatal mucosal cells. Dent Mater 25, 1532-1540, doi:10.1016/j.dental.2009.07.006 (2009).
50 Menon, S. G. et al. Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res 67, 6392-6399, doi:10.1158/0008-5472.CAN-07-0225 (2007).
51 Hadzic, T. et al. The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J Immunol 175, 7965-7972, doi:10.4049/jimmunol.175.12.7965 (2005).
52 Gascoigne, N. R., Rybakin, V., Acuto, O. & Brzostek, J. TCR signal strength and T cell development. Annu Rev Cell Dev Biol 32, 327-348, doi:10.1146/annurev-cellbio-111315-125324 (2016).
53 Stritesky, G. L., Jameson, S. C. & Hogquist, K. A. Selection of self-reactive T cells in the thymus. Annu Rev Immunol 30, 95-114, doi:10.1146/annurev-immunol-020711-075035 (2012).
54 Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu Rev Immunol 21, 139-176, doi:10.1146/annurev.immunol.21.120601.141107 (2003).
55 Dzhagalov, I. L., Chen, K. G., Herzmark, P. & Robey, E. A. Elimination of self-reactive T cells in the thymus: a timeline for negative selection. PLoS Biol 11, e1001566, doi:10.1371/journal.pbio.1001566 (2013).
56 Lewis, J. E., Fu, S. M. & Gaskin, F. Autoimmunity, end organ damage, and the origin of autoantibodies and autoreactive T cells in systemic lupus erythematosus. Discov Med 15, 85-92 (2013).
57 Tsokos, G. C. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 21, 605-614, doi:10.1038/s41590-020-0677-6 (2020).
58 Wilson, J. C., Furlano, R. I., Jick, S. S. & Meier, C. R. Inflammatory bowel disease and the risk of autoimmune diseases. J Crohns Colitis 10, 186-193, doi:10.1093/ecco-jcc/jjv193 (2016).
59 Halling, M. L., Kjeldsen, J., Knudsen, T., Nielsen, J. & Hansen, L. K. Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases. World J Gastroenterol 23, 6137-6146, doi:10.3748/wjg.v23.i33.6137 (2017).
60 Tabarkiewicz, J., Pogoda, K., Karczmarczyk, A., Pozarowski, P. & Giannopoulos, K. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp (Warsz) 63, 435-449, doi:10.1007/s00005-015-0344-z (2015).
61 Sasaki, K. et al. Modulation of autoimmune pathogenesis by T cell-triggered inflammatory cell death. Nat Commun 10, 3878, doi:10.1038/s41467-019-11858-7 (2019).
62 Dornmair, K., Goebels, N., Weltzien, H. U., Wekerle, H. & Hohlfeld, R. T-cell-mediated autoimmunity: novel techniques to characterize autoreactive T-cell receptors. Am J Pathol 163, 1215-1226, doi:10.1016/S0002-9440(10)63481-5 (2003).
63 Pilli, D., Zou, A., Tea, F., Dale, R. C. & Brilot, F. Expanding role of T cells in human autoimmune diseases of the central nervous system. Front Immunol 8, 652, doi:10.3389/fimmu.2017.00652 (2017).
64 Barbarino, J. M., Staatz, C. E., Venkataramanan, R., Klein, T. E. & Altman, R. B. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics 23, 563-585, doi:10.1097/FPC.0b013e328364db84 (2013).
65 Visschedijk, M. C. et al. Genomic and expression analyses identify a disease-modifying variant for fibrostenotic Crohn's disease. J Crohns Colitis 12, 582-588, doi:10.1093/ecco-jcc/jjy001 (2018).
66 International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, doi:10.1126/science.aav7188 (2019).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw