進階搜尋


下載電子全文  
系統識別號 U0026-2708202011101900
論文名稱(中文) 國內學齡前幼兒人體計測數據調查
論文名稱(英文) Anthropometry in Preschool Children in Taiwan
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 鄭伊芳
研究生(英文) I-Fang Cheng
學號 P88981039
學位類別 博士
語文別 英文
論文頁數 172頁
口試委員 指導教授-蘇芳慶
口試委員-郭立杰
口試委員-徐碧真
口試委員-林槐庭
口試委員-鄒瑞怡
中文關鍵字 人體計測  學齡前幼兒  台灣  設計 
英文關鍵字 anthropometry  preschool  Taiwan  design 
學科別分類
中文摘要 人體計測為量測人體周長、表面積、體積等數據之技術,所量測得的人體計測資料對於人類生活及工作環境之規劃相當重要,諸如服裝、產品、工作檯面之設計等,進而更可以廣泛應用於人因設計、醫學研究等。
人體計測資料受種族、年齡、性別與體型等的影響甚鉅,國內外目前已有許多成人人體計測資料,然而關於幼兒人體測量之研究及資料庫卻仍是少數。由於嬰幼兒時期至青春期是人體特徵與生理結構變化最快速的階段,而國內缺乏本土幼兒人體計測相關資料庫,本研究的目的為藉由調查國內國內2至6歲學齡前幼兒的靜態與動態人體計測資料,了解目前國內學齡前幼兒的身體生長現況,並進而建立人體計測資料庫以供產品設計、環境空間規劃等之應用。
本研究使用了電磁場人體動作分析系統 (3SPACE FASTRAK), 搭配傳統的人體量測工具: 電子體重計、皮尺與數位游標卡尺,於國內北、中、南各縣市的幼兒園所中,量測了5,772 名2至6歲的幼兒(其中包含3,041 名男孩和2,731名女孩),並計算了61項靜態人體計測值。動態人體計測量測則使用了八台攝影機組成的人體動作分析系統,於幼兒園所中量測了24個常見於日常生活中與使用空間相關的動作。2至6歲的幼兒當中,每個年齡層的男、女童各量測50人,並從每個動作中去計算該動作的所需空間維度、肢體於空間中的位置、肢體關節的活動角度…等動態人體計測值。測得的靜態與動態人體計測值,以方便應用的平均值、標準差以及常用的百分位數呈現,並架設了網路資料庫,以供更多使用者可以根據各自的需求上網查詢使用。
此2至6歲幼兒之動、靜態人體計測資料庫,期待可以應用於幼兒園設施設備之外,亦有助於設計適合幼兒之桌椅、櫥櫃、餐具、玩具、服裝、日常用品等,以提供學齡前幼兒安全合宜的遊憩、學習與生活環境,使幼兒能在更為適切之環境中學習與成長。
英文摘要 Anthropometry is important in product or environment designs based on human factors. Specific anthropometric databases should be established for certain of populations, especially for different genders, ages and races. This study aimed to establish a local anthropometric resource for the preschool children in Taiwan. In this study, 5,772 preschool children (from two to six years old) were recruited for static anthropometric data survey. An electromagnetic motion analysis system, measuring tape, an electronic scale and electronic calipers were used to measure the basic data, structural and postural dimensions. In dynamic anthropometric data collection, we recruited 500 preschoolers aged 2-6 in Taiwan and utilized an eight-camera Motion Analysis System to survey 24 task movements. Static and dynamic dimensions were obtained in the form of statistical data by means, standard deviations and percentiles. Results of static anthropometric data indicated the situations of the child growth in Taiwan, while those of dynamic anthropometric data show some variations in movement performance because of different level of motor development. This study also inspected the present specifications of the facilities in the kindergartens and playground equipment, and indicated the inappositely. The Anthropometric data obtained from this study can serve as a reference for applications in designs of child product, equipment and environment. It will help increase the quality of life and safety of preschool children in Taiwan.
論文目次 CONTENTS
中文摘要 I
SUMMARY II
致謝 III
I. INTRODUCTION 1
1.1 Introduction of Anthropometry 1
1.2 History of Anthropometry 1
1.3 The Importance of Anthropometry 1
1.4 Anthropometrics and Design 2
1.4.1 Applications of Anthropometric Data 2
1.4.2 The Principles in Application of Anthropometric Data 2
1.5 Literature Reviews 3
1.5.1 The Influence of Unfitted Product Designs 3
1.5.2 Necessity of dynamic anthropometry 4
1.5.3 Ethical difference in anthropometry 4
1.5.4 Development of anthropometric survey for local children 5
1.6 Motivation and Research Purpose 6
1.7 Research Questions and Hypothesis 6
II. METHODS 8
2.1 Research Designs 8
2.1.1 Static Anthropometrics 8
2.1.2 Dynamic Anthropometrics 8
2.2 Subject 8
2.2.1 Participants of Static Anthropometrics 8
2.2.2 Participants of Dynamic Anthropometrics 9
2.3 Instrument 9
2.3.1 Measurement Equipment for Static Anthropometrics 9
2.3.2 Measurement Equipment for Dynamic Anthropometric 10
2.4 Data Collection Procedure 12
2.4.1 Experimental Procedure of Static Anthropometrics 12
2.4.2 Experimental Procedure of Dynamic Anthropometric 13
2.4.3 Field investigation in playground and kindergarten 13
2.5 Data Analysis 14
2.5.1 Calculations of Parameters in Static Anthropometrics 14
2.5.2 Calculations of Parameters in Dynamic Anthropometric 14
2.6 Statistical Analysis 16
2.6.1 Reliability of Measurement 16
2.6.2 Normal Distribution 16
2.6.3 Independent Samples t-test 16
2.6.4 Descriptive Statistics 16
III. RESULTS 18
3.1 Reliability of Measurement and Normal Distribution of Anthropometric Data 18
3.2 Difference between Urban and Rural Areas 18
3.3 Child Growth in Taiwan 18
3.4 Movement Performance in Preschool Children 19
3.5 Anthropometric database 20
3.6 Field Investigation 21
3.7 Website of Anthropometric Database of Preschool Children in Taiwan 21
IV. DISCUSSION 22
4.1 Urban-rural Differences in Children’s Body Sizes 22
4.2 Growth of Children from 2 to 6 Years in Taiwan 22
4.2.1 Child Growth in Taiwan 22
4.2.2 Body Height and Mass of Children in Taiwan, Japan and United states 25
4.3 The Motor Development and Variety of Movement Performance 25
4.4 Field Investigation Results of Child Facilities and Equipment 27
4.4.1 Specifications of Facilities in Kindergartens 27
4.4.2 Specifications of Structure and Equipment in Playground 29
4.5 Applications of Anthropometric Data 31
4.5.1 Applications of Static Anthropometric Data in Child Product Specifications 31
4.5.2 Applications of Dynamic Anthropometric Data in Activity Areas Designs 32
4.5.3 Applications of Dynamic Anthropometric Data in Playground Equipment 34
4.5.4 Applications of Dynamic Anthropometric Data in Activity Designs for Children 38
4.6 Body Measuring Tools for Children Anthropometry Survey 38
V. CONCLUSION 40
REFERENCE 41
Appendix A. Illustrations and definitions of the anthropometric measurements 46
A.1 Positions and available dimensions in standing 46
A.2 Positions and available dimensions in sitting 47
A.3 Positions and available dimensions of hand 48
A.4 Positions and available dimensions in squatting 48
A.5 Structural dimensions of head 49
A.6 Structural dimensions of foot 49
Appendix B. Measurements of the movements and definitions of the dynamic anthropometric parameters 50
B.1 Movements on all-fours 50
B.2 Movements in sitting position 52
B.3 Movements of upper extremity in standing position 55
B.4 Movements of lower extremity in standing position 63
B.5 Position transition 71
B.6 Jumping 74
B.7 Climbing over 77
Appendix C. Static anthropometric data of children in urban and rural areas 79
Appendix E. Dynamic anthropometric database 126
Appendix F. Dimensions of the current product/structure in playgrounds and kindergartens 166

List of Figures
Fig 1. Apparatus in the study 10
Fig 2. (a): The anatomical landmark positions of the 43 reflective markers; (b): Illustration of experimental setup. 11
Fig 3. height-adjusted chair 11
Fig 4. Range of motion in upper extremity 15
Fig 5. Range of motion in trunk 15
Fig 6. Range of motion in lower extremity 16
Fig 7. example of normal distribution in: vertical grip reach in 5-year-old boys; (b) shoulder height in 5-year-old girls 18
Fig 8. Body height and mass values among children in Taiwan, Japan and USA 19
Fig 9. Body height of children in Taiwan and WHO child growth standard 23
Fig 10. Body mass of children in Taiwan and WHO child growth standard 23
Fig 11. BMI of children in Taiwan and WHO child growth standard 24
Fig 12. Head circumference of children in Taiwan and WHO child growth standard 24
Fig 13. Height of movement space in vertical jumping with upward reach in children from 3 to 6 years old 33
Fig 14. Height and width of movement space in sit-to-stand in children from 3 to 6 years old 33
Fig 15. Height the ground to toe tip in maximal knee lift in children from 3 to 6 years old 34
Fig 16. ML distance between origin of body and fingertip of the dominant hand in maximal sideward reach in children from 3 to 6 years old 35
Fig 17. Step length of forward stepping in children from 3 to 6 years old 36

List of Tables
Table 1. The numbers of participants of urban and rural areas in the preliminary survey 9
Table 2. The total numbers of participants 9
Table 3. Finish rate of task movements in 2-year-old group (the size of the group: 100) 20
參考文獻 Agarwal, D., & Agarwal, K. (1994). Physical growth in Indian affluent children (birth-6 years). Indian pediatrics, 31, 377-377.
Australian Capital Territory Government. Design Standards for Urban Infrastructure: Chapter 15 Playgrounds and Playground Equipment. Retrieved from https://www.cityservices.act.gov.au/__data/assets/pdf_file/0012/396876/ds15_playgrounds.pdf
Ayoub, M. A. (1990). Ergonomic deficiencies: I. Pain at work. Journal of occupational medicine.: official publication of the Industrial Medical Association, 32(1), 52-57.
Ball, R., Shu, C., Xi, P., Rioux, M., Luximon, Y., & Molenbroek, J. (2010). A comparison between Chinese and Caucasian head shapes. Applied ergonomics, 41(6), 832-839.
Bernardo, L. M., Gardner, M. J., & Seibel, K. (2001). Playground injuries in children: a review and Pennsylvania Trauma Center experience. Journal for Specialists in Pediatric Nursing, 6(1), 11-20.
Bretschneider, T., Koop, U., Schreiner, V., Wenck, H., & Jaspers, S. (2009). Validation of the body scanner as a measuring tool for a rapid quantification of body shape. Skin Research and Technology, 15(3), 364-369.
Brewer, J., Davis, K., Dunning, K., & Succop, P. (2009). Does ergonomic mismatch at school impact pain in school children? Work, 34(4), 455-464.
Centers for Disease Control and Prevention. National Center for Health Statistics: Growth Charts. Retrieved from https://www.cdc.gov/growthcharts/index.htm
Chuan, T. K., Hartono, M., & Kumar, N. (2010). Anthropometry of the Singaporean and Indonesian populations. International Journal of Industrial Ergonomics, 40(6), 757-766.
Chung, J. W., & Wong, T. K. (2007). Anthropometric evaluation for primary school furniture design. Ergonomics, 50(3), 323-334.
Coblentz, A., & Ignazi, G. (1975). Dynamic Anthropometry and Design of a Vehicle Driver's Control Area (0148-7191). Retrieved from
Deurenberg, P., Deurenberg-Yap, M., Foo, L., Schmidt, G., & Wang, J. (2003). Differences in body composition between Singapore Chinese, Beijing Chinese and Dutch children. European journal of clinical nutrition, 57(3), 405-409.
Dianat, I., Karimi, M. A., Hashemi, A. A., & Bahrampour, S. (2013). Classroom furniture and anthropometric characteristics of Iranian high school students: proposed dimensions based on anthropometric data. Applied ergonomics, 44(1), 101-108.
Dianat, I., Molenbroek, J., & Castellucci, H. I. (2018). A review of the methodology and applications of anthropometry in ergonomics and product design. Ergonomics, 61(12), 1696-1720.
Fathallah, F., Chang, J., Pickett, W., & Marlenga, B. (2009). Ability of youth operators to reach farm tractor controls. Ergonomics, 52(6), 685-694.
Iyer, S. R. (2001). An ergonomic study of chronic musculoskeletal pain in schoolchildren. The Indian Journal of Pediatrics, 68(10), 937-941.
Jaeschke, L., Steinbrecher, A., & Pischon, T. (2015). Measurement of waist and hip circumference with a body surface scanner: feasibility, validity, reliability, and correlations with markers of the metabolic syndrome. PloS one, 10(3).
Kagawa, M., Binns, C., & Hills, A. P. (2007). Body composition and anthropometry in Japanese and Australian Caucasian males and Japanese females. Asia Pac J Clin Nutr, 16(Suppl 1), 31-36.
Khaspuri, G., Sau, S., & Dhara, P. (2007). Anthropometric consideration for designing class room furniture in rural schools. Journal of Human Ecology, 22(3), 235-244.
Knight, G., & Noyes, J. (1999). Children's behaviour and the design of school furniture. Ergonomics, 42(5), 747-760.
Löffler-Wirth, H., Willscher, E., Ahnert, P., Wirkner, K., Engel, C., Loeffler, M., & Binder, H. (2016). Novel anthropometry based on 3D-bodyscans applied to a large population based cohort. PloS one, 11(7).
Lin, J., Chiou, W., Weng, H., Fang, J., & Liu, T. (2004). Application of three-dimensional body scanner: observation of prevalence of metabolic syndrome. Clinical Nutrition, 23(6), 1313-1323.
Lin, T., Ekanayake, A., Gaweshan, L. S., & Hasan, Z. A. (2016). Ergonomics product development of over bed table for bedridden patients. Computer-Aided Design and Applications, 13(4), 538-548.
Lin, Y.-C., Wang, M.-J. J., & Wang, E. M. (2004). The comparisons of anthropometric characteristics among four peoples in East Asia. Applied ergonomics, 35(2), 173-178.
Lohman, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric standardization reference manual (Vol. 177): Human kinetics books Champaign.
Lu, C.-W., & Lu, J.-M. (2017). Evaluation of the Indonesian National Standard for elementary school furniture based on children's anthropometry. Applied ergonomics, 62, 168-181.
Macarthur, C., Hu, X., Wesson, D. E., & Parkin, P. C. (2000). Risk factors for severe injuries associated with falls from playground equipment. Accident Analysis & Prevention, 32(3), 377-382.
Makarkin, A. I. (1996). Computerized human model for helicopter crew station design: The application of the dynamic anthropometry data.
Marschall, M., Harrington, A., & Steele, J. (1995). Effect of work station design on sitting posture in young children. Ergonomics, 38(9), 1932-1940.
Mascie-Taylor, C. N., Yasukouchi, A., & Ulijaszek, S. (2010). Human Variation: From the Laboratory to the Field: CRC Press.
Ministry of Education. (2011). Standard Specifications of Basic Facilities in Preschool. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=H0070037
Ministry of Health, Labour and Welfare. (2016). Handbook of Health and Welfare Statistics. Retrieved from https://www.mhlw.go.jp/english/database/db-hh/2-1.html
Morrison, L., Chalmers, D., Parry, M., & Wright, C. S. (2002). Infant‐furniture‐related injuries among preschool children in New Zealand, 1987− 1996. Journal of paediatrics and child health, 38(6), 587-592.
Naeini, H. S., Lindqvist, K., Jafari, H. R., Mirlohi, A. H., & Dalal, K. (2011). Playground injuries in children. Open access journal of sports medicine, 2, 61.
Norton, C., Nixon, J., & Sibert, J. R. (2004). Playground injuries to children. Archives of disease in childhood, 89(2), 103-108.
Openshaw, S., & Taylor, E. (2006). Ergonomics and design a reference guide. Allsteel Inc., Muscatine, Iowa.
Pagano, B. T., Parkinson, M. B., & Reed, M. P. (2015). An updated estimate of the body dimensions of US children. Ergonomics, 58(6), 1045-1057.
Park, B.-K., Lumeng, J. C., Lumeng, C. N., Ebert, S. M., & Reed, M. P. (2015). Child body shape measurement using depth cameras and a statistical body shape model. Ergonomics, 58(2), 301-309.
Park, B.-K., & Reed, M. P. (2015). Parametric body shape model of standing children aged 3–11 years. Ergonomics, 58(10), 1714-1725.
Paschoarelli, L. C., & da Silva, J. C. P. (2000). Ergonomic research applied in the design of pre-school furniture: The Mobipresc 3.6. Paper presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting.
Pepper, M. R., Freeland-Graves, J. H., Yu, W., Stanforth, P. R., Cahill, J. M., Mahometa, M., & Xu, B. (2010). Validation of a 3-dimensional laser body scanner for assessment of waist and hip circumference. Journal of the American College of Nutrition, 29(3), 179-188.
Peter Heseltine, K. D., Rob Davies,. (2016). All you need to know about Playground Equipment & Under-surfacing Safety. Retrieved from
https://www.playgrounds.co.nz/media/1466/playground-people-pink-book-all-you-need-to-know.pdf
Pheasant, S., & Haslegrave, C. M. (2005). Bodyspace: Anthropometry, ergonomics and the design of work: CRC press.
Pierola, A., Epifanio, I., & Alemany, S. (2017). Child t-shirt size data set from 3D body scanner anthropometric measurements and a questionnaire. Data in brief, 11, 311-315.
Saarni, L., Nygård, C.-H., Kaukiainen, A., & Rimpelä, A. (2007). Are the desks and chairs at school appropriate? Ergonomics, 50(10), 1561-1570.
Sadeghi, F., Mazloumi, A., & Kazemi, Z. (2015). An anthropometric data bank for the Iranian working population with ethnic diversity. Applied ergonomics, 48, 95-103.
Sampei, M. A., Novo, N. F., Juliano, Y., & Sigulem, D. M. (2008). Anthropometry and body composition in ethnic Japanese and Caucasian adolescent boys. Pediatrics International, 50(5), 679-686.
Schwebel, D. C., & Brezausek, C. M. (2014). Child development and pediatric sport and recreational injuries by age. Journal of athletic training, 49(6), 780-785.
Stewart, A., Ledingham, R., & Williams, H. (2017). Variability in body size and shape of UK offshore workers: A cluster analysis approach. Applied ergonomics, 58, 265-272.
Suh, D., Jung, J. H., Chang, I., Lee, J. H., Jung, J. Y., Kwak, Y. H., & Kim, D. K. (2018). Epidemiology of playground equipment related/unrelated injuries to children: A registry-based cohort study from 6 emergency departments in Korea. Medicine, 97(50).
Szeto, G. P., Straker, L., & Raine, S. (2002). A field comparison of neck and shoulder postures in symptomatic and asymptomatic office workers. Applied ergonomics, 33(1), 75-84.
Taifa, I. W., & Desai, D. A. (2017). Anthropometric measurements for ergonomic design of students’ furniture in India. Engineering science and technology, an international journal, 20(1), 232-239.
The play inspection company. (2018). An Essential Guide to EN 1176 and EN 1177 Children's Playground Equipment & Surfacing: updated for 2018. In. Retrieved from http://playinspections.co.uk/
Trevelyan, F. C., & Legg, S. J. (2011). Risk factors associated with back pain in New Zealand school children. Ergonomics, 54(3), 257-262.
Troussier, B. (1999). Comparative study of two different kinds of school furniture among children. Ergonomics, 42(3), 516-526.
Ulione, M. S., & Dooling, M. (1997). Preschool injuries in child care centers: nursing strategies for prevention. Journal of Pediatric Health Care, 11(3), 111-116.
US Consumer Product Safety Commission. (2008). Public playground safety handbook: DIANE Publishing.
Wagner, D. R., & Heyward, V. H. (2000). Measures of body composition in blacks and whites: a comparative review. The American journal of clinical nutrition, 71(6), 1392-1402.
Wang, E. M.-y., Wang, M.-J., Yeh, W.-Y., Shih, Y.-C., & Lin, Y.-C. (1999). Development of anthropometric work environment for Taiwanese workers. International Journal of Industrial Ergonomics, 23(1-2), 3-8.
Wang, M.-J. J., Wang, E., & Lin, Y.-C. (2002). The anthropometric database for children and young adults in Taiwan. Applied ergonomics, 33(6), 583-585.
Wells, J., Ruto, A., & Treleaven, P. (2008). Whole-body three-dimensional photonic scanning: a new technique for obesity research and clinical practice. International Journal of Obesity, 32(2), 232-238.
Zakaria, N. (2016). Clothing for children and teenagers: anthropometry, Sizing and Fit: Woodhead Publishing.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw