進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201918001100
論文名稱(中文) 以預先導入甲烷/空氣預混氣促進HCCI定容正庚烷噴霧引燃之實驗暨數值模擬研究
論文名稱(英文) Experimental and numerical simulations of HCCI constant volume ignition enhancement by using n-heptane spray with pre-filled methane/air premixture
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 陳坤禾
研究生(英文) Kun-Ho Chen
電子信箱 chenkh1979@gmail.com
學號 P48991125
學位類別 博士
語文別 英文
論文頁數 122頁
口試委員 指導教授-趙怡欽
召集委員-鄭藏勝
口試委員-袁曉峰
口試委員-陳冠邦
口試委員-李約亨
口試委員-吳志勇
口試委員-湯敬民
中文關鍵字 Ignition Quality Tester  CH4  n-heptane  HCCI  IDT  Auto-Ignition 
英文關鍵字 Ignition Quality Tester  CH4  n-heptane  HCCI  IDT  Auto-Ignition 
學科別分類
中文摘要 本研究是探討氣/液雙燃料(CH4/n-heptane),CH4預先導入燃燒室形成氣態燃料/空氣預先混合環境,再藉由定量的n-heptane (正庚烷)進行引燃,在不同CH4/AIR預混當量比對點火延遲時間的影響。而本研究規劃使用四種參數組合進行比較分析。CASE1:CH4/AIR預混當量比為0.0,腔內溫度673K、700K、773K、873K、973K與1073K的自動點火延遲時間(IDT)。IDT則隨著腔體內溫度越高則液體燃料(n-heptane)在噴嘴噴霧吸熱到引燃時間會隨之縮短;CASE2:固定腔內溫度773K和CH4/AIR的預混當量比為0.0,但不同腔內壓力(Pa=15bar、20bar、25bar、30bar和35bar)的條件下對自動點延遲時間的影響。隨著腔體內壓力越高則噴霧燃料自動點火延遲時間(IDT)將可縮短;CASE3:固定腔內溫度773K和壓力25bar,CH4/AIR預混當量比(φ)為0.0、0.2、0.4、0.6、0.8 and 1.0。可知單純噴霧燃燒(φ=0.0)的情況下燃料是以典型柴油引擎的擴散燃燒。空氣預混甲烷之燃燒(φ=0.2、0.4、0.6、0.8 and 1.0)在燃料噴入燃燒腔室的初期引燃的發展不如φ=0情況快速,但腔室內的溫度上升超過甲烷的自燃溫度點之後,甲烷的引燃則是呈現較大範圍的多點燃燒。並且隨著CH4/AIR 當量比值的增加(φ值約高則代表實際甲烷添加量也較多)有抑制初期引燃之化學反應率,因此導致整體自動延遲時間的增加趨勢;CASE4:固定燃燒室內壓力(25bar)與AIR+CH4混合比例(φ=0.0和0.6)於不同艙內溫度(673K、773K與873K)條件下各自在自動點火過程之壓力曲線。在673K時因甲烷自燃溫度點(923K)高於液態燃料許多因此抑制了液態燃料噴霧燃燒的反應,以至於在673K的溫度條件下無法完成自動引燃機制。在相同的CH4/AIR預混當量比值(φ=0.6)時艙體內溫度越高則可加速甲烷參與n-heptane的自動燃燒過程,縮短整體的自動點火延遲時間(IDT)。
另外進行化學機構靈敏度與反應速率分析,在固定腔內溫度773K和壓力25bar, CH4/AIR預混當量比(φ=0.0、0.2、0.4、0.6、0.8 and 1.0)的條件下,得知R99(CH4+H<=>CH3+H2)、R100(CH4+OH<=>CH3+H2O)與R101(CH4+O<=>CH3+OH)的靈敏度隨著φ增加而提升的現象。在反應速率分析中亦可發現R100與R101的反應速率也同樣隨φ而增加的情況,這也顯示出H、OH和O被R99、R100與R101所吸收。所以導致•OOC7H14OOH→•OC7H13OOH +•OH的產物OH被R100吸收,使得自由基潭沒有立即足夠OH自由基引起分歧連鎖反應,導致後段化學反應減緩使得自動點火延遲時間延長。
英文摘要 This study is to investigate the effect of different CH4/AIR mixing ratios on ignition delay time. Using the gas/liquid as fuel (CH4/n-heptane), CH4 for pre-introduction into the combustion chamber to form a gaseous fuel/air premixed environment, and then spray igniting by quantitative n-heptane (n-heptane). There are four case for comparative analysis. CASE1: CH4/AIR premixed equivalence ratioφ is 0.0, and auto-ignition delay times (IDT) for inner chamber temperatures are 673K, 700K, 773K, 873K, 973K and 1073K. IDT, as the temperature inside the chamber is higher, the liquid fuel (n-heptane) will be shortened in the nozzle spray to the ignition time. CASE2: The pre-mixing equivalence ratio of the fixed chamber temperature 773K and φ= 0.0, but the effect of different chamber pressures (Pa = 15 bar, 20 bar, 25 bar, 30 bar and 35 bar) on the automatic point delay time. As the Pressure inside the chamber is higher, the spray fuel auto-ignition delay time (IDT) will be shortened. CASE3: With fixed chamber temperature 773K and pressure 25bar, The equivalence ratio (φ) is under from 0.0 to 1.0. It can be seen that in the case of pure spray combustion (φ = 0.0), the fuel is a diffusion combustion of a typical diesel engine. The combustion of air premixed methane (φ = 0.2, 0.4, 0.6, 0.8 and 1.0) is not as fast as the initial ignition of fuel injected into the combustion chamber, but the temperature inside the chamber rises above the auto-Ignition temperature of methane. After the point, the ignition of methane is a large range of multi-point combustion. With the increase of the equivalent ratio, the chemical reaction rate of the initial ignition is suppressed. Thus it, caused an increase in the overall automatic delay time. CASE4: The pressure curve of the spontaneous process in the fixed combustion chamber pressure (25 bar) andφ=0.0 and 0.6 under different chamber temperatures (673K, 773K and 873K). At 673K, the spontaneous ignition temperature of methane (923K) is higher than that of liquid fuel, thus inhibiting the reaction of liquid fuel spray combustion, so that the automatic ignition mechanism cannot be completed under the temperature condition of 673K at φ=0.6. the higher chamber temperature same CH4/AIR premixed equivalence ratio, that accelerates the methane participation in the n-heptane auto-combustion process and shortens the overall auto-ignition delay time (IDT).
In addition, chemical mechanism sensitivity and reaction rate analysis are performed. under the conditions that are constant chamber temperature is 773K, pressure is 25bar and various CH4/AIR premixed equivalence ratio (φ=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), it is known that the sensitivities of R99 (CH4+H<=>CH3+ H2), R100 (CH4+OH<=>CH3+H2O) and R101 (CH4+O<=>CH3+OH) are increased with the increase of φ. In the reaction rate analysis, it was also found that the reaction rates of R100 and R101 are increased with φ increasing, which also showed that H, OH and O were absorbed by R99, R100 and R101. Therefore, the product OH of •OOC7H14OOH→•OC7H13OOH +•OH is absorbed by R100, so that the free radicals having not immediately enough OH radicals to cause a divergent chain reaction, and it slow down the chemical reactions in the following stages the auto-ignition delay time extended.
論文目次 ABSTRACT …………………………………………………… ………XLIV
CONTENTS …………………………………………………………...XLVI
LIST OF TABLES……………………………………………………….XLIX
LIST of FIGURES...…………………………...……………………………...L
NOMENCLATURE LVI
CHAPTER 1 Introduction 1
1-1 Background 1
1-2 Motivations and objectives 3
CHAPTER 2 Literature Review 4
2-1 Gasoline Engines development history and technology 5
2-2 Diesel Engines development history and technology 6
2-3 HCCI Engines development history and technology 8
2-4 CNG Engines development history and technology 11
CHAPTER 3 Principles of Auto-Ignition and Natural gas and methane (CH4) fuel characteristics 15
3-1 Basic Principles of Auto-Ignition 15
3-2 Natural gas and methane (CH4) fuel characteristics 16
CHAPTER 4 The Experimental Equipments and Measure Method 22
4-1 nozzle atomization process .22
4-2 Ignition quality test experimental nozzle in high pressure environment visual flow measuring equipment and method .26
4-2-1Nozzle spray environment pressure test system…….….……27
4-2-2Malvern particle Size…………………………………..……28
4-2-3Fuel flow rate…………………………………………..……28
4-2-4Injection shape and Injector delay time………….……..……29
4-2-5CVSCC Equipment Calibration/Test Parameters……...…….29
4-3 Definition of important parameters 30
4-3-1Start of Injection (SOI)………………………………..….….30
4-3-2Ignition Delay Time(IDT)……………………………...……30
4-3-3 Study The Test conditions and methods on ignition delay time of methane/air premixed gas ignited by n-heptane spray in a constant volume combustion unit 33
4-4 Constant Volume Spray Combustion Chamber (CVSCC) Design 34
4-3-1Constant Volume Burner Cavity Design…………………....35
4-3-2 Temperature control system and pressure extraction device 35
4-3-3Fuel injection device…………………………………..…….36
4-3-4Fuel Supply System……………………………………..…..36
4-3-5Fuel injector control device………………………… .……...37
4-3-6Standard fuel preparation…………………………… ….…..37
4-3-7Ignition Analysis Post Processing Program… ………….…..38
CHAPTER 5 Constant Volume Spray Burner (CVSCC) Numerical Simulation 40
5-1 Ignition quality test platform analysis technology 41
5-2 CVSCC model grid points 42
5-3 Spray characteristics correction 43
5-4 Analytical program physical model and fuel chemical organization 44
CHAPTER 6 Results and Discussion 47
6-1 Air heating characteristics in the chamber 47
6-2 Nozzle spray characteristics 48
6-2-1Nozzle flow characteristic curve…………..………………...48
6-2-2 Nozzle injection delay characteristics and spray flow 49
6-2-3 Spray point extend Penetration Depth, Atomization Cone Angle, and Spray extending velocity 50
6-2-4Spray particle size…………………………..……………….51
6-3 Ignition delay effect (experiment) 51
6-4 Ignition Delay Effect (Numeral Calculations) 52
6-5 The Analysis and Comparison of numerical calculation results and experimental data 54
6-6 Chemical Reaction Mechanism Sensitivity Analysis 55
CHAPTER 7 Conclusions and Future Works 57
7-1 Conclusions 57
7-2 Future Work 60
REFERENCES...………………………………………………………….....62
PUBLICATION LIST 81
VITA ..……………………………………………………………………...122



參考文獻 [1]U. S. Energy Information Administration, Monthly Energy Review February 2019, EIA, February 2019.
[2]吳明修,頁岩油氣之發展與可能影響,Economic research vol.14, ISBN:978-986-04-1266-6,P235-P256,2014年。
[3]Stanglmaier, R. H., and Roberts, C. E., “Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications,” SAE Paper 1999-01-3682,1999.
[4]Juttu, S., Thipse, S., Marathe, N., and Gajendra Babu, M., "Homogeneous Charge Compression Ignition (HCCI): A New Concept for Near Zero NOx and Particulate Matter (PM) from Diesel Engine Combustion," SAE Technical Paper 2007-26-020, 2007.
[5]Baumgarten, C., Mixture Formation in Internal Combustion Engines, Springer, pp.253-279, 2006.
[6]Pulkrabek, W. W., Engineering Fundamentals of the Internal Combustion Engine, Prentice Hall, New Jersey, ISBN978-957-584-702-9, 1997.
[7]張智荃,航空燃油JP-8應用於柴油引擎的燃燒特性分析,國立中興大學機械工程研究所碩士學位論文,2014年7月。
[8]Li, T. and Li, L., Preparation of Homogeneous Gas Mixture for Diesel Engine HCCI Combustion, Automobile Theology, 2004-05-1000-3703, 2004.
[9]Dec, J.E., Advanced compression-ignition engines understanding the in-cylinder processes, Proceedings of the Combustion Institute, 32(2), pp. 2727-2742, ISSN 1540-7489, 2009. https://doi.org/10.1016/j.proci.2008.08.008.
[10]ASTM D6890. Standard test method for determination of ignition delay and derived cetane number DCN of diesel fuel oils by combustion in a constant volume chamber: ASTM International. doi:10.1520/D6890-15B.
[11]Van Gerpen, J., Cetane number testing of biodiesel, Proceedings of the third liquid fuels conference, pp. 197-206, 1996.
[12]ASTM D613. Standard test method for cetane number of diesel fuel oil. ASTM International. doi:10.1520/D0613-16A.
[13]Ryan, T.W., Correlation of physical and chemical ignition delay to cetane number. SAE technical paper 852103; 1985. doi:10.4271/852103.
[14]Jumpei Ozaki and Norimasa lida,〝Effect of Degree of Unmixedness on HCCI Combustion Based on Experiment and Numerical Analysis,〞SAE Paper NO.061053, 2006.
[15]Dec, J.E., Wontae Hwang, and Magnus Sjoberg 〝An Investigation of Thermal ratification in HCCI Engines Using Chemiluminescence Imaging,〞SAE Paper NO06011518, 2006.
[16]Lijima, A., Takashi Watanabe, Koji Yoshida, and Hideo Shoji 〝A Study of HCCI Combustion Using a wo-Stroke Gasoline Engine with a High Compression ratio〞063243, 2006.
[17]Mattson, J., Langness, C., and Depcik, C., "Modified Heat Release Analysis for Diesel-Assisted CNG Combustion," SAE Technical Paper 2015-01-1744, 2015. https://doi.org/10.4271/2015-01-1744.
[18]Mattson, J., Langness, C., and Depcik, C., "An Analysis of Dual-Fuel Combustion of Diesel with Compressed Natural Gas in a Single-Cylinder Engine," SAE Technical Paper 2018-01-0248, 2018.https://doi.org/10.4271/2018-01-0248.
[19]Mikulski, M., Wierzbicki, S., Śmieja, M., and Matijošius, J., “Effect of CNG in a fuel dose on the combustion process of a compression-ignition engine”, Transport, 30(2), pp.162-171, 2015. DOI: 10.3846/16484142.2015.1045938
[20]Mattson, J., Langness, C., and Depcik, C., Exergy Analysis of Dual-Fuel Operation with Diesel and Moderate Amounts of Compressed Natural Gas in a Single-Cylinder Engine, Combustion Science and Technology , 190 (3), pp. 471-489, 2018.
[21]Heywood J.B., Internal Combustion Engine Fundamentals 2nd Edition, McGraw-Hill, New York, ISBN:0-07-100499-8, 1988.
[22]Lijiang, W., Peng, G., A review on natural gas/diesel dual fuel combustion, emissions and performance, Fuel Processing Technology, 142, pp. 264-278, 2016.
[23]Demirbas, A., Methane gas Hydrate: Springer Science & Business Media, 2010.
[24]Zhang, Q.C., Chen, G.S., Zheng, Z.Q., Liu, H.F., Xu, J., Yao, M.F., Combustion and emissions of 2,5-dimethylfuran addition on a diesel engine with low temperature combustion Fuel, 103, pp. 730-735, 2013.
[25]Yang, B., Wei, X., Xi, C.X., Liu, Y.F., Zeng, K., Lai, M.C., Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine, Energy Convers. Manag., 87, pp. 297-304, 2014.
[26]Yang, B., Xi, C.X., Wei, X., Zeng, K., Lai, M.C., Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load, Appl. Energy, 143, pp. 130-137, 2015.
[27]Yang, B.B., Yao, M.F., Cheng, W.K., Zheng, Z.Q., Yue, L., Regulated and unregulated emissions from a compression ignition engine under low temperature combustion fueled with gasoline and n-butanol/gasoline blends, Fuel, 120 (0), pp. 163-170, 2014.
[28]Lijiang, W., Peng, G., A review on natural gas/diesel dual fuel combustion, emissions and performance, Fuel Processing Technology, 142, pp. 264-278, 2016.
[29]Selim, M.Y.E., Pressure–time characteristics in diesel engine fueled with natural gas, Renew, Energy 22 (4), pp. 473–489, 2001.
[30]Papagiannakis, R.G., Hountalas, D.T., Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine, Appl. Therm. Eng., 23 (3), pp.353–365, 2003.
[31]Abdelaal, M.M., Hegab, A.H., Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR, Energy Convers. Manga. 64 (0), pp. 301–312, 2012.
[32]Liu, S.H., Wang, Z.Y., Ren, J., Development of compressed natural gas/diesel dual-fuel turbocharged compression ignition engine, Proc. Inst. Mech. Eng. D J. Automob. Eng., 217 (D9), pp. 839-845, 2003.
[33]Wannatong, Akarapanyavit, N., Siengsanorh, S., Chanchaona. S., Combustion and knock characteristics of natural gas diesel dual fuel engine, SAE Technical Paper 2007–01–2047, 2007.
[34]Lounici, M.S., Loubar, K., Tarabet, L., Balistrou, M., Niculescu, D.C., Tazerout, M., Towards improvement of natural gas–diesel dual fuel mode: an experimental investigation on performance and exhaust emissions, Energy, 64 , pp. 200-211, 2014.
[35]Papagiannakis, R.G., Hountalas, D.T., Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas Energy Convers. Manga., 45 (18–19), pp. 2971-2987, 2004.
[36]Imran, S., Emberson, D.R., Ihracska, B., Wen, D.S., Crookes, R.J., Korakianitis T., Effect of pilot fuel quantity and type on performance and emissions of natural gas and hydrogen-based combustion in a compression ignition engine, Int. J. Hydrogen Energy, 39 (10), pp. 5163-5175, 2014.
[37]Sun, L., Liu, Y.F., Zeng, K., Yang, R., Hang, Z.H., Combustion performance and stability of a dual-fuel diesel–natural-gas engine, Proc. Inst. Mech. Eng. D J. Automob. Eng. 229 (2) , pp. 235–246, 2015.
[38]Zhou, L., Liu, Y.F., Wu, C.B., Sun, L., Wang, L., Zeng, K. et al., Effect of the diesel injection timing and the pilot quantity on the combustion characteristics and the fine-particle emissions in a micro-diesel pilot-ignited natural-gas engine, Proc. Inst. Mech. Eng. D J. Automob. Eng., 227 (8), pp. 1142-1152, 2013.
[39]Yang, B., Wei, X., Xi, C.X., Liu, Y.F., Zeng, K., Lai, M.C., Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine, Energy Convers, Manag, 87, 297–304, 2014.
[40]Yang, B., Xi, C.X., Wei, X., Zeng, K., Lai, M.C., Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load, Appl. Energy ,143 , Pages 130–137, 2015.
[41]Kim, D.S., Lee, C.S., Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR, Fuel, Volume 85, Issues 5–6, Pages 695-704, ISSN 0016-2361, 2006.
[42]Minetti, R., Carlier, M., Ribaucour, M., Therssen, E., Sochet, L.R., A rapid compression machine investigation of oxidation and auto-ignition of n-heptane: measurements and modeling, Combust Flame, 102, pp. 298-309, 1995.
[43]Pekalski, A.A., Zevenbergen, J.F., Pasman, H.J., Lemkowitz, S.M., Dahoe, A.E., Scarlett, B., The relation of cool flames and auto-ignition phenomena to process safety at elevated pressure and temperature, Journal of Hazardous Materials, 93(1), pp. 93-105, ISSN 0304-3894, 2002.
[44]鄭喬鴻,噴霧液滴粒徑與流場特性分析,國立中山大學機械與機電工程學系碩士論文,101年7月。
[45]Lefebver, A.H., Atomization and Sprays, Hemisphere Publishing Corporation, New York, 1989.
[46]McKinley, G.H., Renardy, M., Wolfgang von Ohnesorge, Physics of Fluids, 23: 127101, 2011. doi:10.1063/1.3663616
[47]陳正暐,缸內直噴噴嘴在壓力環境之噴霧特性研究,國立成功大學航空太空工程研究所碩士學位論文,100年6月。
[48]Naser, N., Sarathy, S.M., Chung, S.H., Ignition delay time sensitivity in ignition quality tester (IQT) and its relation to octane sensitivity, Fuel, 233, pp. 412–419, 2018.
[49]Bogin, G.E., Dean, A.M., DeFilippo, A., Chen, J.Y., Chin, G., Luecke, J., Ratcliff, M.A., Zigler, B.T., Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V. Conference Paper: NREL/CP-540-46738, 2010.
[50]Bogin, G.E., DeFilippo, A., Chen, J.Y., Chin, G., Luecke, J., Ratcliff, M.A., Zigler, B.T., Dean, A.M., Numerical and Experimental Investigation of n-heptane Autoignition in the Ignition Quality Tester (IQT), Energ Fuels, 25:5562, 2011.
[51]Bogin, Jr G.E., Osecky, E., Ratcliff, M.A., Luecke, J., He, X., Zigler, B.T., Dean, A.M., Ignition quality tester (IQT) investigation of the negative temperature coefficient region of alkane autoignition, Energy Fuels, 27(3), pp.1632–1642, 2013. http://dx.doi.org/10.1021/ ef301738b.
[52]Bogin, Jr. G.E., Osecky, E., Chen, J., Ratcliff, M.A., Luecke, J., Zigler, B.T., Dean, A.M., Experiments and computational fluid dynamics modeling analysis of large n-alkane ignition kinetics in the ignition quality tester, Energy Fuels, 28(7), pp. 4781–4794, 2014. http://dx.doi.org/10.1021/ef500769j.
[53]Osecky, E.M., Bogin, Jr. G.E., Villano, S.M., Ratcliff, M.A., Luecke, J., Zigler, B.T., Dean, A.M., Investigation of iso-octane ignition and validation of a multizone modeling method in an ignition quality tester, Energy Fuels, 30(11):9761–71, 2016. http://dx.doi.org/ 10.1021/acs.energyfuels.6b01406.
[54]Bogin, G.E., Luecke, J., Ratcliff, M.A., Osecky, E., Zigler, B.T., Effects of iso-octane/ethanol blend ratios on the observance of negative temperature coefficient behavior within the ignition quality tester. Fuel;186: pp. 82–90, 2016. http://dx.doi.org/10.1016/j.fuel. 2016.08.021.
[55]Mubarak, A.M., Elhagrasy, A., Sarathy, M., Chung, S., Im, H.G., Auto-ignition and spray characteristics of n-heptane and iso-octane fuels in ignition quality tester. SAE Technical Paper 2018-01-0299; 2018. doi:10.4271/2018-01-0299.
[56]Mendelson, J.L., Ignition quality tester characterization with pure component and conventional navy fuels. [Ph.D. thesis]. College Park: University of Maryland; 2016. http://dx.doi.org/10.13016/M2QK01.
[57]林怡潔,添加煙道氣體於預混富氧甲烷火焰之效應,國立成功大學航空太空工程研究所碩士學位論文,101年6月。
[58]Curran, H.J., Gaffuri P., Pitz W.J.,et al., A comprehensive modeling study of n-heptane oxidation. Combustion and Flame, 114(1-2):PP.149-177; 1998.
[59]蘇萬華、趙 華、王建昕,均質壓燃低溫燃燒發動機理論與技術,科學出版社,109年1月。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw