進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201914583000
論文名稱(中文) 入滲補注對於未飽和土壤壓密過程之影響理論評估
論文名稱(英文) A Theoretical Investigation on Effect of Different-form Infiltration on Consolidation in Unsaturated Soils
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 張叡哲
研究生(英文) Jui-Che Chang
學號 N86061052
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 口試委員-陳主惠
口試委員-賴建信
口試委員-李振誥
口試委員-徐國錦
口試委員-廖宏儒
指導教授-羅偉誠
中文關鍵字 孔彈性壓密理論  未飽和土壤  入滲補注  土壤沉陷 
英文關鍵字 consolidation  subsidence  infiltration  unsaturated soil 
學科別分類
中文摘要 台灣受季風影響又因山脈方向呈南北縱走使得台灣西南部地區乾濕季節相當顯著,乾季時西南部地區水資源較為匱乏,地下水視為最佳備用水源。早期國土保育概念尚未發展完全,對於地下水取用並無明確規範,造成地下水過度取用進而產生嚴重地層下陷問題。近年來嚴重下陷影響範圍逐漸擴大,政府逐漸正視此問題並以限制地下水取用為主軸提出許多措施進行地層下陷防治。造成快速下陷因素相當多元且複雜,除地下水過度取用外,都市快速發展所帶來之因素亦不容小覷,城市發展下不透水鋪面擴大使入滲補注減少以及建物增加使載重增加等,皆為造成城市下陷加快之因素。世界各大都市如英國倫敦,美國休士頓及印尼雅加達近年來皆面臨快速下陷帶來之影響,其中印尼雅加達尤其嚴重,其於過去十年間下沉近2.5公尺,造成其嚴重下陷之因素包含了地下水地過度利用以及城市發展造成之問題。面對嚴重下陷,除降低人為因素外應對於未來沉陷狀況進行精確評估以即早進行準備。現今評估下陷之模式多以模擬飽和層土壤受地下水位高低造成之沉陷為主,鮮少評估未飽和層之沉陷問題,因此本文將探討非飽和土壤受入滲補注下對於壓密之影響。
為探討未飽和土壤沉陷問題,本文利用Lo et al., (2014)所發表之一維未飽和土壤孔彈性壓密理論進行研究,將邊界條件分別假設為未補注、固定補助及乾濕季變化之變動補注,探討不同初始飽和度( 、 及 )之三種土壤(黏土、壤土及砂土)於長時間下受三種補注邊界作用對於沉陷量以及隨土體深度變化之超額孔隙水壓之影響。研究結果顯示,高滲透度及高初始飽和度之未飽和土壤對於補注邊界之反應於壓力及沉陷量皆較為明顯且快速。然而砂土及壤土於初始時沉陷即達穩定狀態且沉陷量遠小於黏土,因此非飽和層土壤之研究可針對飽和度較高之黏土進行。對於補注邊界帶來之影響可看出,受補注之土壤其壓力消散速度以及沉陷速度較為緩和且其沉陷量明顯小於未補注土壤。然而即便土壤受到補注作用其沉陷並不會因此停止發生而是以較為緩和速度進行。為了解氣候變化造成乾濕季型態改變對於未飽和土壤沉陷可能帶來之影響,本研究針對變動補注之補注量差異以及頻率進行改變,結果可看出補注差異對於沉陷具有顯著影響,而補注頻率對於沉陷之影響較不明顯。因此,由本研究結果可知補注對於未飽和層土壤沉陷具有相當之影響,故城市規畫應朝向海棉城市進行以使城市具有韌性且發展更為永續。
英文摘要 It is widely known that overexploiting groundwater resources will lead to severe land subsidence. Land subsidence does not only lead to flood risk, but also endanger rail transit operations. In recent years, urban development has grown rapidly due to the need of industry, transportation, housing, and etc. In the process of urbanization, natural land surfaces are replaced by impervious pavement and buildings. In addition, the process of industrial rapidly development thereby makes abnormal climate influence the precipitation. Therefore, the change of the infiltration makes land subsidence problems become more complicated. Most research on this topic has shown that decreases in groundwater levels are the primary cause of land subsidence. However, soil consolidation is affected by infiltration in the vadose zone, and this is also a crucial factor related to land subsidence. Based on the poroelasticity theory of consolidation in unsaturated soils developed by Lo et al. (2014), the analytical solutions formulated for a one‐dimensional consolidation of single‐layer unsaturated soils subject to a flux boundary condition are presented in this study, in which we assume different forms of infiltration on the top of the soil sample and free drainage on its base. In addition, we discussed the unsaturated soil consolidation process for different types of soils with different initial saturation levels. Our results shows that the response to excess pore pressure and total settlement under the infiltration boundary is dominated by the intrinsic permeability and initial saturation levels of unsaturated soils. In addition, the time required for pressure and settlement to achieve dynamic equilibrium is significantly related the form of infiltration. Infiltration has a great impact on subsidence. Accordingly, change in infiltration caused by human activities is of considerable importance to land subsidence problems.
論文目次 摘要 I
誌謝 XIII
目錄 XIV
表目錄 XVI
圖目錄 XVII
第一章、 緒論 1
1-1、 研究動機 1
1-2、 文獻回顧 2
1-3、 本文架構 5
1-4、 流程圖 6
第二章、 研究理論 7
2-1、 孔彈性壓密理論平衡方程式 7
2-2、 線性應力- 應變關係式 11
2-3、 不排水孔彈性參數 14
2-4、 一維未飽和壓密理論 16
2-5、 初始條件 17
2-6、 邊界條件 19
2-7、 解析解 21
第三章、 數值模式 30
3-1、 保水曲線 30
3-2、 相對滲透係數 30
第四章、 結果與討論 33
4-1、 固定載重下探討不同補注邊界時無因次孔隙水壓隨深度之變化 34
4-2、 固定載重下探討不同補注邊界時土壤沉陷隨時間之變化 35
4-3、 變動補注下探討不同補注量及補注頻率時土壤沉陷隨時間之變化 36
第五章、 結論與建議 59
5-1、 結論 59
5-2、 建議 60
參考文獻 61
參考文獻 1. Ausilio, E. and Conte, E. (1999). "Settlement rate of foundations on unsaturated soils." Canadian Geotechnical Journal 36(5): 940-946.
2.Barry, D., Parlange, J.-Y., Sander, G. and Sivaplan, M. (1993). "A class of exact solutions for Richards' equation." Journal of Hydrology 142(1-4): 29-46.
3. Biot, M. and Willis, D. (1957). "The elastic coeff cients of the theory of consolidation." J. appl. Mech 24: 594-601.
4. Biot, M.A. (1962). "Mechanics of deformation and acoustic propagation in porous media." Journal of applied physics 33(4): 1482-1498.
5. Bishop, A.W. (1959). " The effective stress principle, Teknisk Ukeblad , Vol. 93,
859-863.
6. Bishop, A.W. and Blight, G. (1963). "Some aspects of effective stress in saturated and partly saturated soils." Geotechnique 13(3): 177-197.
7. Brooks, R.H. and Corey, A.T. (1964). "Hydraulic properties of porous media and their relation to drainage design." Transactions of the ASAE 7(1): 26-28.
8. Brooks, R.H. and Corey, A.T. (1966). "Properties of porous media affecting fluid flow." Journal of the Irrigation and Drainage Division 92(2): 61-90.
9. Chaussard, E., Amelung, F., Abidin, H. and Hong, S.-H. (2013). "Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction." Remote Sensing of Environment 128: 150-161.
10. Darcy, H.P.G. (1856). Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau, etc, V. Dalamont.
11. Deng, J.H., Lee, J.W. and Lo, W.C. (2019). "Closed-form Solutions for One-dimensional Consolidation in Saturated Soils under Different Waveforms of Time-varying External Loading." Journal of Hydrology.
12. Don, N.C., Hang, N.T.M., Araki, H., Yamanishi, H. and Koga, K. (2006). "Groundwater resources management under environmental constraints in Shiroishi of Saga plain, Japan." Environmental geology 49(4): 601-609.
13. Ehlers, W. (2002). Porous media: theory, experiments and numerical applications, Springer Science & Business Media.
14. Fredlund, D.G. and Hasan, J.U. (1979). "One-dimensional consolidation theory: unsaturated soils." Canadian Geotechnical Journal 16(3): 521-531.
15. Hoffmann, J., Leake, S.A., Galloway, D.L. and Wilson, A.M. (2003). MODFLOW-2000 ground-water model--User guide to the subsidence and aquifer-system compaction (SUB) package, Geological Survey Washington DC.
16. Jacob, C.E. (1940). "On the flow of water in an elastic artesian aquifer." Eos, Transactions American Geophysical Union 21(2): 574-586.
17. Leake, S. and Prudic, D.E. (1991). Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, US Department of the Interior, US Geological Survey.
18. Lo, W.C., Sposito, G. and Majer, E. (2002). "Immiscible two-phase fluid flows in deformable porous media." Advances in Water Resources 25(8-12): 1105-1117.
19. Lo, W.C., Sposito, G. and Majer, E. (2005). "Wave propagation through elastic porous media containing two immiscible fluids." Water Resources Research 41(2).
20. Lo, W.C., Yeh, C.L. and Tsai, C.T. (2007). "Effect of soil texture on the propagation and attenuation of acoustic wave at unsaturated conditions." Journal of Hydrology 338(3-4): 273-284.
21. Lo, W.C., Sposito, G. and Huang, Y.H. (2012). "Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies." Journal of Applied Geophysics 78: 77-84.
22. Lo, W.C., Sposito, G. and Chu, H. (2014). "Poroelastic theory of consolidation in unsaturated soils." Vadose Zone Journal 13(5).
23. McWhorter, D.B. (1971). "Infiltration affected by flow of air." Hydrology papers (Colorado State University); no. 49.
24. Mualem, Y. (1976). "A new model for predicting the hydraulic conductivity of unsaturated porous media." Water Resources Research 12(3): 513-522.
25. Pride, S.R. (2005). Relationships between seismic and hydrological properties. Hydrogeophysics, Springer: 253-290.
26. Richards, L.A. (1931). "Capillary conduction of liquids through porous mediums." Physics 1(5): 318-333.
27. Schrefler, B. and Xiaoyong, Z. (1993). "A fully coupled model for water flow and airflow in deformable porous media." Water Resources Research 29(1): 155-167.
28. Terzaghi, K. (1925). "Erdbaumechanik auf bodenphysikalischer Grundlage."
29. Terzaghi, K. (1943). "Theoretical Soil Mechanics. JohnWiley & Sons." New York: 11-15.
30. Terzaghi, K. (1951). Theoretical soil mechanics, Chapman And Hall, Limited.; London.
31. Tuncay, K. and Yavuz Corapcioglu, M. (1996). "Body waves in poroelastic media saturated by two immiscible fluids." Journal of Geophysical Research: Solid Earth 101(B11): 25149-25159.
32. Van Genuchten, M.T. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1." Soil science society of America journal 44(5): 892-898.
33. Van Genuchten, M.T., Leij, F. and Lund, L. (1992). Indirect methods for estimating the hydraulic properties of unsaturated soils, Citeseer.
34. Wang, K. and Davis, E.E. (1996). "Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations." Journal of Geophysical Research: Solid Earth 101(B5): 11483-11495.
35. Wang, H.F. (2000). Theory of linear poroelasticity with applications to geomechanics and hydrogeology, Princeton University Press, Princeton.
36. Zheng-Han, C., Ding-Yi, X. and Zu-Dian, L. (1993). "Consolidation theory of unsaturated soil based on the theory of mixture (Ⅰ)."Applied Mathematics and Mechanics 2: 127-137.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw