進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201817381100
論文名稱(中文) 具垂直與水平隔震性能之互制式雙層隔震系統
論文名稱(英文) An interactive-type dual-isolation system for vertical and horizontal seismic isolation
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 蕭堃安
研究生(英文) Kun-An Shiao
學號 N66054069
學位類別 碩士
語文別 中文
論文頁數 362頁
口試委員 指導教授-盧煉元
口試委員-朱世禹
口試委員-林子剛
口試委員-李姿瑩
口試委員-黃尹男
中文關鍵字 互制式  雙層隔震  慣性式  垂直隔震  搖擺效應  雙向隔震  空氣彈簧  近域震波 
英文關鍵字 interactive-type  dual isolation  inertia-type  vertical isolation  rocking effect  air spring  near-field earthquake 
學科別分類
中文摘要 現今許多研究均證實隔震技術可以有效地於強震中保護建物或設備物。但一般隔震系統之應用研究多僅止於水平雙向隔震,同時兼具水平與垂直隔震能力之系統較為少見。究其原因主要乃因垂直隔震系統必須具有足夠之柔度以拉長隔震週期,但相對亦會使系統搖擺向之轉動勁度變小(亦即抗搖擺勁度變小),因此易產生極大搖擺現象使系統邊角加速度反應過度放大,進而導致隔震失效之現象,此為垂直隔震技術之發展瓶頸。但實際地震確實包含了水平和垂直雙向之運動,因此具水平與垂直雙向隔震系統之發展甚為重要。本文參考前人於水平單向互制式雙層隔震系統之概念,提出一新的具垂直與水平隔震性能之互制式雙層隔震系統。此系統乃利用底層與上層建物間於振動時所產生之慣性互制力以同時降低兩建物質心轉動位移與絕對加速度反應,避免地震中搖擺放大之現象。
本文藉由參數研究以決定互制式雙層隔震系統較佳之參數組合,並以14組水平垂直雙向地震波進行動力歷時分析,以驗證本文建議之雙層隔震系統減震能力。研究成果顯示雙層隔震系統具有抗搖擺之特性,相較於三維基底隔震系統,雙層隔震之底層與上層建物平均質心轉動向隔震位移可分別減少29%與57%;雙層隔震之底層與上層建物平均質心轉動向絕對加速度則可分別減少57%與21%。且不論是底層或上層建物角隅反應總體減震比率(與基底隔震比)皆較質心減震比率提高許多。
英文摘要 Many studies have confirmed that seismic isolation technology can effectively protect buildings or equipment in strong earthquakes. However, application of seismic isolation systems (SISs) is mostly limited to horizontal isolation, and SISs with both horizontal and vertical isolation capability are rare. Because a vertical SIS must be flexible enough vertically to mitigate vertical ground excitation, this may also reduce the rocking stiffness of the system, simultaneously. As a result, it will easily cause large rocking response and lead to isolation failure in a strong earthquake. On the other hand, an earthquake usually involves both horizontal and vertical ground motions, so the development of horizontal and vertical bi-directional SISs is very important. In this paper, a novel interactive-type dual-isolation system (IDIS) for vertical and horizontal seismic isolation is proposed. The IDIS use the dynamic interaction force between the upper and the bottom substructures exerted by an earthquake to reduce the rocking response (displacement and absolute acceleration) of the isolated structural system.
To determine the better parameters for the IDIS, a systematic procedure for parametric study is proposed in this paper. Fourteen sets of earthquake records are considered in the numerical study to verify the capacity of the IDIS. The simulation results show that the IDIS has good anti-rocking capability. As compared with its single-layer isolation counterpart system, the average rocking displacement of the bottom and the upper structure of IDIS can be reduced by 29% and 57%, respectively. The average acceleration of the bottom and the upper substructures of the IDIS can be reduced by 57% and 21%, respectively. Moreover, the corner rocking amplification effect of the IDIS system is less than that of the single-layer system.
論文目次 摘要 I
誌謝 XIV
第1章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 2
1.2.1 垂直隔震相關 2
1.2.2 大型實驗振動台模擬分析相關 2
1.2.3 互制式隔減震系統相關 3
1.3 研究目的與架構 5
第2章 實際複雜系統之實驗與簡化模型有效性探討 7
2.1 三自由度隔震系統及其簡化模型 7
2.2 簡化模型等效參數與實際系統元件配置之關係 12
2.3 三自由度簡化模型之實驗驗證 17
2.3.1 實驗試體描述-浮式基礎 17
2.3.2 實驗設備與組立 17
2.3.3 試驗類型與採用參數 18
2.4 實驗結果 20
2.4.1 原始實驗量測資料歷時 20
2.4.2 以白雜訊振波與正弦波掃頻估算系統頻率響應曲線 23
2.5 實驗隔震系統之轉換函數識別 26
2.5.1 系統識別初始假設與採用的分析實驗資料介紹 27
2.5.2 系統識別成果展示 30
2.5.3 系統識別成果與原實驗資料之比較 33
2.6 簡化模型之等值參數識別與有效性探討 36
2.6.1 簡化模型系統等值參數之估算 36
2.6.2 估算成果展示 39
2.6.3 系統等效參數準確性驗證 40
2.7 小結 43
第3章 慣性互制式雙層隔震建物之分析理論 45
3.1 數學模型介紹 45
3.2 運動方程式推導 46
3.3 去耦合之運動方程式 59
3.4 參數研究用自由度轉換及其運動方程式 62
3.5 無因次化參數轉換 64
3.6 比較用單層基底隔震建物 66
第4章 慣性互制式雙層隔震建物最佳化設計參數研究 69
4.1 參數研究之流程 69
4.2 垂直向之參數研究 71
4.2.1 參數研究用之效能指標 71
4.2.2 以自功率譜效能指標進行較佳化參數研究 76
4.2.3 採用較佳參數系統之轉換函數特性 79
4.3 水平向去耦合之參數研究 79
4.4 水平轉動耦合之參數研究 82
4.4.1 水平轉動耦合參數於工程實務之可行性探討 82
4.4.2 水平轉動耦合之效能指標 84
4.4.3 以自功率譜效能指標進行較佳參數研究 87
4.5 最佳參數系統之模態特性與轉換函數 94
4.5.1 IDIS系統之模態特性 94
4.5.2 IDIS系統之轉換函數 96
第5章 慣性互制式雙層隔震建物減震行為之評估 99
5.1 採用震波與方法介紹 99
5.2 以實際震波驗證最佳化參數 99
5.2.1 垂直單向震波驗證 100
5.2.2 水平單向震波驗證 101
5.2.3 水平轉動耦合系統之水平單向震波驗證 102
5.3 雙層隔震建物減震行為評估 104
5.3.1 系統地震力歷時反應 105
5.3.2 各震波下最大反應值 106
第6章 慣性互制式雙層隔震建物細部設計示範例 109
6.1 雙層隔震建物之建議設計流程 109
6.1.1 階段一:決定整體系統較佳參數 109
6.1.2 階段二:決定隔震與阻尼元件數量及配置 110
6.2 雙層隔震建物示範例說明 111
6.3 元件數量與配置之計算示範例 111
第7章 結論與建議 117
7.1 結論 117
7.2 建議 122
參考文獻 123
附錄A簡化型動力方程式推導 127
參考文獻 1. Araki Y., Asai T., and Masui T. (2009) “Vertical vibration isolator having piecewise-constant restoring force.” Earthquake Engineering and Structural Dynamics, 38:1505-1523.
2. Araki Y., Kawabata S., Asai T., and Masui T. (2011) “Response of vibration-isolated object to ground motions with intense vertical accelerations.” Engineering Structures, 33:3610-3619.
3. Araki Y., Asai T., Kimura K., Maezawa K., and Masui T. (2013) “Nonlinear vibration isolator with adjustable restoring force” Journal of Sound and Vibration, 332(23): 6063-6077
4. Becker, T. C., & Ezazi, A. (2016). “Enhanced performance through a dual isolation seismic protection system.” The Structural Design of Tall and Special Buildings, 25(1), 72-89.
5. Den Hartog, J. P. (1985). Mechanical vibrations. Courier Corporation.
6. FEMA E-74 (2011) “Reducing the risks of nonstructural earthquake damage – a practical guide.” Federal Emergency Management Agency, Washington, D.C, January.
7. Firestone (2014) Engineering Manual & Design Guide, Firestone Tire and Rubber Company, Nashville, Tennessee.
8. Giaralis, A., & Marian, L (2014). “Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems.”Probabilistic Engineering Mechanics, 38, 156-164.
9. Giaralis, A., & Taflanidis, A. A. (2015, May). “Reliability-based design of tuned mass-damper-inerter (TMDI) equipped multi-storey frame buildings under seismic excitation.”In 12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP 2015. University of British Columbia Library.
10. Jansson, M. (2003) “Subspace identification and ARX modeling.” 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands.
11. Kitamura S., Okamura S., and Takahashi K. (2005) “Experimental study on vertical component seismic isolation system with coned disk spring.” Proceedings of PVP2005, 2005 ASME Pressure Vessels and Piping Division Conference, July 17-21, Denver, Colorado USA, PVP2005-71356.
12. Larimore, W.E. (1990) “Canonical variate analysis in identification, filtering, and adaptive control.” Proceedings of the 29th IEEE Conference on Decision and Control, pp. 596–604,
13. Ljung, L. (1999) System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR.
14. Lu, L. Y. (2001) “Seismic test of modal control with direct output feedback for building structures.”Structural Engineering and Mechanics,12(6), 633-656.
15. Lutao YAN, Zhipeng YANG, and Hong Li, (2013) “Design of the interval between reaction mass and foundation in vibration test system” Applied Mechanics and Materials, Vols. 321-324 , pp. 17−22.
16. Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014).“Using an inerter‐based device for structural vibration suppression.”Earthquake Engineering & Structural Dynamics, 43(8), 1129-1147.
17. Lu, L.Y., Chen P. R. and Pong K. W. (2016) “Theory and experiment of an inertia-type vertical isolation system for seismic protection of equipment.” Journal of Sound and Vibration, 366:44-61.
18. Lazar, I. F., Gonzalez‐Buelga, A., Jiang, J. Z., Neild, S. A., & Inman, D. J. (2017). “Assessing the effect of nonlinearities on the performance of a tuned inerter damper.”Structural Control and Health Monitoring, 24(3), e1879.
19. Ljung, L. (2017) MATLAB & SIMULINK System Identification Toolbox™ User’s Guide.The MathWorks, Inc.
20. Memari A. M., Maneetes H., and Bozorgnia Y. (2004) “Study of the effect of near-source vertical ground motion on seismic design of precast concrete cladding panels.” Journal of Architectural Engineering, 10:167-184.
21. Matsagar, V. A., & Jangid, R. S. (2005). “Viscoelastic damper connected to adjacent structures involving seismic isolation.” Journal of civil engineering and management, 11(4), 309-322.
22. MTS Systems Corporation (2015) “NCREE South Branch 02: Foundation Harmonic Motion Analysis v2.” MTS Systems Corporation Proprietary Data
23. MathWorks (2017) MATLAB & SIMULINK Global Optimization Toolbox User’s Guide. The MathWorks, Inc.
24. Paola Ceresa, Franco Brezzi, and Gian Michele Calvi, (2013) “Modelling a large-scale uniaxial shaking table facility” Proceedings of the 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Kos Island, Greece,.
25. Richardson, A., Walsh, K. K., & Abdullah, M. M. (2013). “Closed‐form equations for coupling linear structures using stiffness and damping elements.” Structural Control and Health Monitoring, 20(3), 259-281.
26. Smith, M. C. (2002). “Synthesis of mechanical networks: The inerter.” IEEE Transactions on automatic control, 47(10), 1648-1662.
27. Shimada T., Fujiwaka T., Moro S., and Ikutama S. (2004) “Study on three-dimensional seismic isolation system for next-generation nuclear power plant hydraulic three-dimensional base isolation system.” Proceedings of the 13th World Conference on Earthquake Engineering, August 1-6, Vancouver, BC, Canada, Paper No. 788.
28. Verhaegen, M. (1994) “Identification of the deterministic part of MIMO state space models.” Automatica, Vol. 30, No. 1, pp. 61–74.
29. Wang, S. J., Chang, K. C., Hwang, J. S., & Lee, B. H. (2011). “Simplified analysis of mid‐story seismically isolated buildings.” Earthquake Engineering & Structural Dynamics, 40(2), 119-133.
30. Wang, S. J., Chang, K. C., Hwang, J. S., Hsiao, J. Y., Lee, B. H., & Hung, Y. C. (2012). “Dynamic behavior of a building structure tested with base and mid-story isolation systems.” Engineering Structures, 42, 420-433.
31. Wang T, Li J. and Wang F. (2015) “Experimental study on thick rubber bearings of three-dimensional isolation of nuclear power plants.” Nuclear Power Engineering, 36(5): 37-40.
32. Yau J. D. and Fryba L. (2007) “Response of suspended beams due to moving loads and vertical seismic ground excitations.” Engineering Structures, 29:3255-3262.
33. Zhu, H. P., Ge, D. D., & Huang, X. (2011).“Optimum connecting dampers to reduce the seismic responses of parallel structures.” Journal of Sound and Vibration, 330(9), 1931-1949.
34. 李忠誠 (1991) “動力方程式的拉卜拉士解法及其在隔震系統上的應用” 國立台灣大學土木工程學研究所碩士論文,6月,指導老師:楊永斌。
35. 彭冠文 (2015) ,「建物中設備水平與垂直雙向隔震技術支實驗與理論研究」,國立高雄第一科技大學,營建工程系碩士論文,六月,指導老師:盧煉元。
36. 盧煉元、吳政彥、葉弈麟 (2009) “圓錐形摩擦單擺支承之隔震應用研究”,結構工程,二十四卷,第二期,91-116頁。
37. 盧煉元、胡宣德、林子堯、林柏樺 (2015)“減震技術於離岸風力發電支撐結構之應用研究” 結構工程Vol. 31, No.1, p99-130。
38. 盧煉元、張婉妮 (2001) “垂直地震力對滑動式隔震結構之影響” 國家地震工程研究中心報告,報告編號NCREE-01-025。
39. 鍾立來、吳賴雲(2012) “調諧質塊阻尼器於基底振動之最佳減振設計參數”,結構工程,二十七卷,第四期,70-90頁
40. 劉瓊琳 (2017) “空氣彈簧於慣性式隔震系統之應用研究” 國立成功大學土木工程研究所碩士論文,7月,指導老師:盧煉元。
41. 盧煉元、蕭堃安、鍾立來、陳科澄、劉瓊琳(2018)“台南國震振動台浮式基礎動力特性識別之研究” 國家地震工程研究中心報告(監修中,待發表)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw