進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201816545800
論文名稱(中文) Bi4Ti3O12及Bi4Ti3O12-rGO奈米複合薄膜壓電及光電化學性質之研究
論文名稱(英文) Study of Piezo-related and Photoelectrochemical Properties of Pristine Bi4Ti3O12 and Bi4Ti3O12-Reduced Graphene Oxide Nanocomposite Thin Films
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 游安純
研究生(英文) Anna Sophia Monsalud Ebuen
學號 NB6057093
學位類別 碩士
語文別 英文
論文頁數 107頁
口試委員 指導教授-張高碩
口試委員-丁志明
口試委員-陳貞夙
口試委員-魏大華
中文關鍵字 Bi4Ti3O12  還原氧化石墨烯  複合物  sol-gel  UV光還原  水熱法還原  光催化  光電化學反應  壓電材料 
英文關鍵字 Bi4Ti3O12  reduced graphene oxide  composite  sol-gel  UV reduction  hydrothermal reduction  photocatalysis  photoelectrochemical reaction  piezoelectricity 
學科別分類
中文摘要  此篇論文探討Bi4Ti3O12薄膜和Bi4Ti3O12/rGO複合材料成功的透過sol-gel的方式成功成長在FTO基板上,並研究其壓電能力、光催化能力、以及光電化學的特性。

  氧化石墨烯的還原方式則是透過光照以及水熱法兩種方式,其結果透過XRD、Raman和XPS確認其成功鍵結。而且透過XPD的分析得知兩種方式得到的複合材料(Bi4Ti3O12/rGO (UV) and Bi4Ti3O12/rGO (hydro))皆是透過Ti-O-C鍵結做為連接而形成複合材料。

  在壓電性質的研究中指出,Bi4Ti3O12薄膜以及兩個複合材料(Bi4Ti3O12/rGO (UV), and Bi4Ti3O12/rGO (hydro))的壓電和壓電光效應的能力不高,歸因於Bi4Ti3O12晶體分佈並無規則的排列導致其較弱的驅動壓電潛能。然而,這三個樣品光催化以及壓電光催化的能力十分顯著,尤其是Bi4Ti3O12/rGO (hydro)展現最好的效能,其反應速率24  10-3/min-1,比Bi4Ti3O12薄膜高出4~5倍。此外,初步的透過可見光的照射所得到的光電流密度的提升,推斷出複合材料擁有優異的光電化學表現。而光催化效能與能階圖的趨勢一致,更負的導帶能階導致超氧自由基更容易形成,貢獻在光降解的實驗。此外,透過能階圖得知,氫氣跟氧氣的還原氧化電位夾在導帶跟價帶中間,促使其成為優異的光電化學分解水的材料。
英文摘要 Bi4Ti3O12 films and Bi4Ti3O12/rGO composites on FTO substrates were fabricated using a facile sol-gel method and were investigated regarding its piezo-related capabilities, photocatalysis, and PEC properties.

UV-illumination and a hydrothermal approach were employed to reduce GO to rGO, which was ascertained through XRD, Raman and XPS. The bonding between Bi4Ti3O12 and rGO was also ascertained through XPS because of the presence of the Ti-O-C peak on the samples of Bi4Ti3O12/rGO (UV) and Bi4Ti3O12/rGO (hydro).

The piezo-related studies of the pristine Bi4Ti3O12, Bi4Ti3O12/rGO (UV), and Bi4Ti3O12/rGO (hydro) indicated minor piezotronic and piezophototronic effects, which was attributed to poor inducement of piezopotential because of random distribution of Bi4Ti3O12 crystals instead of well aligned morphology. However, the photocatalytic and piezophotocatalytic properties of the samples were promising, wherein Bi4Ti3O12/rGO (hydro) sample exhibited the best performance with k of approximately 24  10-3/min-1, which was 4~5 times higher than that of the pristine Bi4Ti3O12. In addition, the excellent photoelectrochemical performance of composite samples was preliminarily determined from the observation of an enhancement in its photocurrent density under visible light illumination. The photocatalytic properties were consistent with the deduced energy band diagram, which showed that a more negative conduction band positions than the formation potential of superoxide radicals (O2/•O2-) was ideal for photodegradation applications, and that the conduction and valence band edge potentials straddled the hydrogen and oxygen redox potentials was excellent for overall photoelectrochemical water splitting.
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
Table of Figures vi
Table of Tables x
Chapter 1 Introduction 1
1.1 Significance of the Study 1
1.2 Objective of the Study 2
Chapter 2 Background and Literature Review 3
2.1 Noncentrosymmetric materials 3
2.2 Piezoelectricity 7
2.2.1 Piezotronics 9
2.2.2 Piezophototronics 12
2.2.3 Piezocatalysis 16
2.3 Photocatalysis 18
2.3.1 Photodegradation 19
2.3.2 Photocatalytic water splitting 21
2.3.3 Approaches to enhance photocatalytic performance 23
2.4 PEC cell 29
2.4.1 Types of PEC cells 29
2.4.2 Structure of the semiconductor-electrolyte junction 32
2.4.3 Photocurrent measurement 35
2.4.4 Cell efficiency calculations 37
2.5 Bismuth titanate (Bi4Ti3O12) 39
2.5.1 Crystal structure 39
2.5.2 Electronic band structure 40
2.5.3 Material properties 41
2.5.4 Existing fabrication methods 43
2.6 Graphene-Based Materials 46
2.6.1 Graphene Oxide (GO) 47
2.6.2 Reduced Graphene Oxide (rGO) 48
Chapter 3 Experimental Procedure 51
3.1 Substrate Cleaning 51
3.2 Synthesis of Bi4Ti3O12 films: Sol-gel method 52
3.3 Synthesis of GO powder: Modified Hummer’s method 53
3.4 Reduction of GO and synthesis of Bi4Ti3O12/rGO composite film 54
3.4.1 Hydrothermal method 54
3.4.2 Ultraviolet (UV) light illumination method 55
3.5 Characterizations 56
3.5.1 X-ray Diffraction (XRD) 56
3.5.2 Scanning Electron Microscopy (SEM) 57
3.5.3 Raman Spectroscopy 58
3.5.4 X-ray (XPS) and Ultraviolet (UPS) Photoelectron Spectroscopy 58
3.5.5 UV-visible Spectroscopy (UV-vis) 58
3.5.6 Electrical Measurement 59
3.5.7 Photodegradation Measurement 60
3.5.8 PEC Measurement 62
Chapter 4 Results and Discussion 63
4.1 Characterization of the Bi4Ti3O12 film 63
4.1.1 Synthesis of Bi4Ti3O12 through hydrothermal method 63
4.1.2 Synthesis of Bi4Ti3O12 films through the Sol-gel Method 66
4.2 Characterization of GO powders to rGO 71
4.2.1 Hydrothermal reduction 71
4.2.2 UV Illumination reduction 74
4.3 Characterizations of the Bi4Ti3O12/rGO composite films 76
4.3.1 XRD results 77
4.3.2 Raman results 77
4.3.3 SEM images 79
4.3.4 XPS results 80
4.3.5 UPS results 84
4.3.6 UV-vis spectroscopy 85
4.3.7 Energy band structure 86
4.4 Investigation of Piezo-related properties 87
4.5 Investigation of Photodegradation properties 91
4.5.1 Photocatalytic performance 91
4.5.2 Piezophotocatalytic performance 93
4.5.3 Mechanism 96
4.6 Investigation of Photoelectrochemical (PEC) properties 96
Chapter 5 Conclusion 98
Bibliography 100

參考文獻 [1] C. R. Bowen, H. A. Kim, P. M. Weaver and S. Dunn, “Piezoelectric and ferroelectric materials and structures for energy harvesting applications.,” Energy Environ. Sci. 7 1, 25–44 (2014).
[2] S. Bai, Q. Xu, L. Gu, F. Ma, Y. Qin and Z. L. Wang, “Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor.,” Nano Energy 1 6, 789–795 (2012).
[3] F. Peter, Piezoresponse Force Microscopy and Surface Effects of Perovskite Ferroelectric Nanostructures. Forschungszentrum Jülich GmbH, (2006).
[4] A. L. Kholkin, N. A. Pertsev and A. V. Goltsev, “Piezoelectricity and crystal symmetry.,” Piezoelectric and Acoustic Materials for Transducer Applications 17–38 (2008).
[5] L. W. Martin and A. M. Rappe, “Thin-film ferroelectric materials and their applications.,” Nature Reviews Materials 2 2, (2016).
[6] P. S. Halasyamani and K. R. Poeppelmeier, “Noncentrosymmetric Oxides.,” Chemistry of Materials 10 10, 2753–2769 (1998).
[7] C. S. Brown, R. C. Kell and L. A. Thomas, “Piezoelectric Materials, A Review of Progress.,” Proceedings of the IRE 109 43, 99–114 (1962).
[8] P. Dineva, D. Gross, R. Müller and T. Rangelov, “Dynamic Fracture of Piezoelectric Materials.,” 212, (2014).
[9] W. P. Mason, “Piezoelectricity, its history and applications.,” The Journal of the Acoustical Society of America 70 6, 1561–1566 (1981).
[10] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti and J. Rödel, “BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives.,” Applied Physics Reviews 4 4, 1–53 (2017).
[11] S. Wada, A. Seike and T. Tsurumi, “Poling Treatment and Piezoelectric Properties Crystals of Potassium Niobate Ferroelectric Single Crystals.,” The Japan Society of Applied Physics 40, 5690–5697 (2001).
[12] R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure R.,” Applied Physics A: Materials Science & Processing 37 4, 191–203 (1985).
[13] R. T. Smith and F. S. Welsh, “Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate.,” Journal of Applied Physics 42 6, 2219–2230 (1971).
[14] S. B. Lang, “Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool.,” Physics Today 58 8, 31–36 (2005).
[15] C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan and R. Vaish, “Pyroelectric materials and devices for energy harvesting applications.,” Energy Environ. Sci. 7 12, 3836–3856 (2014).
[16] D. A. Bonnell, “Ferroelectric Organic Materials Catch Up with Oxides.,” Science 339, 401–403 (2013).
[17] R. E. Cohen, “Origin of ferroelectricity in perovskite oxides.,” Nature 358 6382, 136–138 (1992).
[18] J.-H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S.-W. Kim and J. H. Kim, “All-in-one energy harvesting and storage devices.,” J. Mater. Chem. A 4 21, 7983–7999 (2016).
[19] X. Wang, J. Zhou and Z. L. Wang, Nanopiezotronics and nanogenerators. (2012).
[20] Z. L. Wang, “Piezotronic and piezophototronic effects.,” Journal of Physical Chemistry Letters 1 9, 1388–1393 (2010).
[21] Z. L. Wang, “From nanogenerators to piezotronics- A decade-long study of ZnO nanostructures.,” MRS Bulletin 37 9, 814–827 (2012).
[22] Z. L. Wang, “Nanopiezotronics.,” Advanced Materials 19 6, 889–892 (2007).
[23] W. Wu and Z. L. Wang, “Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics.,” Nature Reviews Materials 1 7, 1–17 (2016).
[24] X. Wen, W. Wu, C. Pan, Y. Hu, Q. Yang and Z. Lin Wang, “Development and progress in piezotronics.,” Nano Energy 14, 276–295 (2014).
[25] Z. L. Wang, “Progress in piezotronics and piezo-phototronics.,” Advanced Materials 24 34, 4632–4646 (2012).
[26] M. Que, R. Zhou, X. Wang, Z. Yuan, G. Hu and C. Pan, “Progress in piezo-phototronic effect modulated photovoltaics.,” Journal of Physics Condensed Matter 28 43, (2016).
[27] Y. Zhang, Y. Yang and Z. L. Wang, “Piezo-phototronics effect on nano/microwire solar cells.,” Energy & Environmental Science 5 5, 6850 (2012).
[28] M. B. Starr and X. Wang, “Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials.,” Scientific Reports 3 1, 1–8 (2013).
[29] M. B. Starr and X. Wang, “Coupling of piezoelectric effect with electrochemical processes.,” Nano Energy 14, 296–311 (2014).
[30] K. Nakata and A. Fujishima, “TiO2 photocatalysis: Design and applications.,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 3, 169–189 (2012).
[31] A. L. Linsebigler, G. Lu and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results.,” Chemical Reviews 95 3, 735–758 (1995).
[32] J. Joy, J. Mathew and S. C. George, “Nanomaterials for photoelectrochemical water splitting – review.,” International Journal of Hydrogen Energy 43 10, 4804–4817 (2018).
[33] H. Abdullah, M. M. R. Khan, H. R. Ong and Z. Yaakob, “Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview.,” Journal of CO2 Utilization 22 March, 15–32 (2017).
[34] R. Michal, S. Sfaelou and P. Lianos, “Photocatalysis for renewable energy production using photofuelcells.,” Molecules 19 12, 19732–19750 (2014).
[35] L. Jiang, Y. Wang and C. Feng, “Application of photocatalytic technology in environmental safety.,” Procedia Engineering 45, 993–997 (2012).
[36] A. Hernández-Ramírez and I. Medina-Ramírez, Photocatalytic Semiconductors. (2015).
[37] M. M. Khan, S. F. Adil and A. Al-Mayouf, “Metal oxides as photocatalysts.,” Journal of Saudi Chemical Society 19 5, 462–464 (2015).
[38] S. H. S. Chan, T. Y. Wu, J. C. Juan and C. Y. Teh, “Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water.,” Journal of Chemical Technology and Biotechnology 86 9, 1130–1158 (2011).
[39] K. M. Lee, C. W. Lai, K. S. Ngai and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review.,” Water Research 88, 428–448 (2016).
[40] S. P. Kim, M. Y. Choi and H. C. Choi, “Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation.,” Materials Research Bulletin 74, 85–89 (2016).
[41] D. Yin, F. Zhao, L. Zhang, X. Zhang, Y. Liu, T. Zhang, C. Wu, D. Chen and Z. Chen, “Greatly enhanced photocatalytic activity of semiconductor CeO2 by integrating with upconversion nanocrystals and graphene.,” RSC Advances 6 105, 103795–103802 (2016).
[42] G. Zhang, G. Liu and J. T. S. Irvine, “Inorganic perovskite photocatalysts for solar energy utilization.,” Chemical Society Reviews 45, 5951–5984 (2016).
[43] P. Cie, P. Mytych and Z. Stasicka, “Homogeneous photocatalysis by transition metal complexes in the environment.,” 224, 17–33 (2004).
[44] R. Saravanan, F. Gracia and A. Stephen, Nanocomposites for Visible Light-induced Photocatalysis. (2017).
[45] C. Byrne, G. Subramanian and S. C. Pillai, “Recent advances in photocatalysis for environmental applications.,” Journal of Environmental Chemical Engineering July, 1–25 (2017).
[46] A. B. Djurišić, Y. H. Leung and A. M. Ching Ng, “Strategies for improving the efficiency of semiconductor metal oxide photocatalysis.,” Materials Horizons 1 4, 400 (2014).
[47] Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. L. Zhang, A. Xia, L. Lv and Y. Liu, “Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4surface heterojunction.,” Applied Catalysis B: Environmental 234 February, 37–49 (2018).
[48] S. S. Dunkle, R. J. Helmich and K. S. Suslick, “BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis.,” Journal of Physical Chemistry C 113 28, 11980–11983 (2009).
[49] W. F. Yao, X. H. Xu, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang and B. B. Huang, “Photocatalytic property of perovskite bismuth titanate.,” Applied Catalysis B: Environmental 52 2, 109–116 (2004).
[50] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode.,” Nature 238 5358, 37–38 (1972).
[51] H. Ahmad, S. K. Kamarudin, L. J. Minggu and M. Kassim, “Hydrogen from photo-catalytic water splitting process: A review.,” Renewable and Sustainable Energy Reviews 43, 599–610 (2015).
[52] T. Hisatomi, J. Kubota and K. Domen, “Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.,” Chem. Soc. Rev. 43 22, 7520–7535 (2014).
[53] S. Chen and L. W. Wang, “Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution.,” Chemistry of Materials 24 18, 3659–3666 (2012).
[54] S. Chen, T. Takata and K. Domen, “Particulate photocatalysts for overall water splitting.,” Nature Reviews Materials 2, 1–17 (2017).
[55] R. Marschall, “Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity.,” Advanced Functional Materials 24 17, 2421–2440 (2014).
[56] B. Xu, Q. Zhang, S. Yuan, M. Zhang and T. Ohno, “Morphology control and photocatalytic characterization of yttrium-doped hedgehog-like CeO2.,” Applied Catalysis B: Environmental 164, 120–127 (2015).
[57] J. A. Anta, “Electron transport in nanostructured metal-oxide semiconductors.,” Current Opinion in Colloid and Interface Science 17 3, 124–131 (2012).
[58] M. Khairy and W. Zakaria, “Effect of metal-doping of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes.,” Egyptian Journal of Petroleum 23 4, 419–426 (2014).
[59] F. Ahmed, N. Arshi, M. S. Anwar, R. Danish and B. H. Koo, “Quantum-confinement induced enhancement in photocatalytic properties of iron oxide nanoparticles prepared by Ionic liquid.,” Ceramics International 40 10, 15743–15751 (2014).
[60] E. A. Sedov, K.-P. Riikonen and K. Y. Arutyunov, “Quantum size phenomena in single-crystalline bismuth nanostructures.,” Quantum Materials 2 1, 18 (2017).
[61] F. E. Osterloh, “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting.,” Chem. Soc. Rev. 42 6, 2294–2320 (2013).
[62] A. M. SmithXXX and S. M. Nie, “Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering.,” Accounts of Chemical Research 43 2, 190–200 (2010).
[63] S. Bai, J. Jiang, Q. Zhang and Y. Xiong, “Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations.,” Chem. Soc. Rev. 44 10, 2893–2939 (2015).
[64] J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, “Heterojunction Photocatalysts.,” Advanced Materials 29 20, (2017).
[65] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances.,” Chemical Society Reviews 43 15, 5234 (2014).
[66] H. O. Finklea, “Photoelectrochemistry: Introductory concepts.,” Journal of Chemical Education 60 4, 325 (1983).
[67] L. M. Peter, “Fundamental Aspects of Photocatalysis.,” Photocatalysis: Fundamentals and Perspectives 1–28 (2016).
[68] G. Hodes, “Photoelectrochemical cell measurements: Getting the basics right.,” Journal of Physical Chemistry Letters 3 9, 1208–1213 (2012).
[69] J. D. Ruth, L. M. Hayes, D. Ramirez Martin and K. Hatipoglu, “An overview of photoelectrochemical cells (PEC): Mimicking nature to produce hydrogen for fuel cells.,” IEEE (2017).
[70] M. Grätzel, “Photoelectrochemical cells.,” Nature 414, 338–344 (2001).
[71] D. Wei and G. Amaratunga, “Photoelectrochemical Cell and Its Applications in Optoelectronics.,” October 2 12, 897–912 (2007).
[72] Q. Huang, Z. Ye and X. Xiao, “Recent progress in photocathodes for hydrogen evolution.,” J. Mater. Chem. A 3 31, 15824–15837 (2015).
[73] Z. Li, W. Luo, M. Zhang, J. Feng and Z. Zou, “Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook.,” Energy Environ. Sci. 6 2, 347–370 (2013).
[74] Z. Chen, H. N. Dinh and E. Miller, Photoelectrochemical water splitting: standards, experimental methods, and protocols. (2013).
[75] Z. Lazarevic, B. D. Stojanovic and J. A. Varela, “An approach to analyzing synthesis, structure and properties of bismuth titanate ceramics.,” Science of Sintering 37 3, 199–216 (2005).
[76] A. Z. Simões, M. P. Cruz, A. Ries, E. Longo, J. A. Varela and R. Ramesh, “Ferroelectric and piezoelectric properties of bismuth titanate thin films grown on different bottom electrodes by soft chemical solution and microwave annealing.,” Materials Research Bulletin 42 5, 975–981 (2007).
[77] F. Wang, J. Wang, X. Zhong, B. Li, J. Liu, D. Wu, D. Mo, D. Guo, S. Yuan, K. Zhang and Y. Zhou, “Shape-controlled hydrothermal synthesis of ferroelectric Bi4Ti3O12 nanostructures.,” CrystEngComm 15 7, 1397 (2013).
[78] G. Xu, Y. Yang, H. Bai, J. Wang, H. Tian, R. Zhao, X. Wei, X. Yang and G. Han, “Hydrothermal synthesis and formation mechanism of the single-crystalline Bi4Ti3O12 nanosheets with dominant (010) facets.,” CrystEngComm 18 13, 2268–2274 (2016).
[79] Q. Yanga, Y. Lia, Q. Yina, P. Wanga and Y.-B. Cheng, “Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis.,” 59 9, 3–4 (1996).
[80] Q. Zhou, B. J. Kennedy and C. J. Howard, “Structural Studies of the Ferroelectric Phase Transition in Bi4Ti3O12.,” Chemistry of Materials 15 26, 5025–5028 (2003).
[81] M. E. Mendoza, “Conductivity and optical absorption in Bi4Ti3O12 single crystals.,” 588 001, 18–20 .
[82] T. Goto, Y. Noguchi, M. Soga and M. Miyayama, “Effects of Nd substitution on the polarization properties and electronic structures of bismuth titanate single crystals.,” Materials Research Bulletin 40 6, 1044–1051 (2005).
[83] Y. Chen, D. Liang, Q. Wang and J. Zhu, “Microstructures, dielectric, and piezoelectric properties of W/Cr co-doped Bi4Ti3O12 ceramics.,” Journal of Applied Physics 116 7, (2014).
[84] H. Zhang, G. Chen and X. Li, “Synthesis and visible light photocatalysis water splitting property of chromium-doped Bi4Ti3O12.,” Solid State Ionics 180 36–39, 1599–1603 (2009).
[85] X. Lin, Q. Guan, T.-T. Liu, Y. Zhang and C.-J. Zou, “Controllable Synthesis and Photocatalytic Activity of Bi4Ti3O12 Particles with Different Morphologies.,” Acta Phys. -Chim. Sin. 29 2, 411–417 (2013).
[86] C. Long, Q. Chang and H. Fan, “Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics.,” Scientific Reports 7 1, 1–15 (2017).
[87] Z. M. Cui, H. Yang, M. Zhang, H. M. Zhang, J. Y. Su and R. S. Li, “Adsorption and Photocatalysis Performance of Bi4Ti3O12 Nanoparticles Synthesized via a Polyacrylamide Gel Route.,” Materials Transactions 57 10, 1766–1770 (2016).
[88] W. Zhao, Z. Jia, E. Lei, L. Wang, Z. Li and Y. Dai, “Photocatalytic degradation efficacy of Bi4Ti3O12 micro-scale platelets over methylene blue under visible light.,” Journal of Physics and Chemistry of Solids 74 11, 1604–1607 (2013).
[89] L. B. U. Kong and J. Ma, “Randomly oriented Bi4Ti3O12 thin films derived from a hybrid sol-gel process.,” Thin Solid Films 89–93 (2000).
[90] C. M. Bedoya-Hincapié, E. Restrepo-Parra, J. J. Olaya-Flórez, J. E. Alfonso, F. J. Flores-Ruiz and F. J. Espinoza-Beltrán, “Ferroelectric behavior of bismuth titanate thin films grown via magnetron sputtering.,” Ceramics International 40 8, 11831–11836 (2014).
[91] X. Lin, L. L. Yu, L. N. Yan, Y. S. Yan, Q. F. Guan and H. Zhao, “Controllable synthesis and photocatalytic activity of Layered, Flowerlike, and Rodlike Bismuth Titanate Nanostructures.,” Chinese Journal of Inorganic Chemistry 29, 0–7 (2013).
[92] H. Gu, Z. Hu, Y. Hu, Y. Yuan, J. You and W. Zou, “The structure and photoluminescence of Bi4Ti3O12 nanoplates synthesized by hydrothermal method.,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 315 1–3, 294–298 (2008).
[93] S. Tu, H. Huang, T. Zhang and Y. Zhang, “Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: Photocatalysis and piezoelectric-catalysis and mechanism insight.,” Applied Catalysis B: Environmental 219, 550–562 (2017).
[94] H. He, J. Yin, Y. Li, Y. Zhang, H. Qiu, J. Xu, T. Xu and C. Wang, “Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {001} facets toward enhanced visible-light-driven photocatalytic activities.,” Applied Catalysis B: Environmental 156–157, 35–43 (2014).
[95] T. Kimura, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications. (2011).
[96] M. Yamaguchi, T. Nagamoto and O. Omoto, “Preparation of highly c-axis-oriented Bi4Ti3012 thin films and their crystallographic, dielectric and optical properties.,” Thin Solid Films 300, 299–304 (1997).
[97] M. Yamaguchi, T. Nagamoto and O. Omoto, “Preparation of C-Axis-Oriented Bi4Ti3O12 Thin Films by Metalorganic Chemical Vapor Deposition.,” Japanese Journal of Applied Physics 32, 4086–4088 (1993).
[98] G. Bahuguna, N. K. Mishra, P. Chaudhary, A. Kumar and R. Singh, “Thin Film Coating through Sol-Gel Technique.,” Research Journal of Chemical Sciences 6 7, 65–72 (2016).
[99] N. Tohge, Y. Fukuda and T. Minami, “Formation and Properties of Ferroelectric Bi4Ti3O12 Films by the Sol-Gel Process.,” Jpn.J.Appl.Phys 31, 4016–4017 (1992).
[100] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong and K. P. Loh, “Hydrothermal dehydration for the ‘green’ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties.,” Chemistry of Materials 21 13, 2950–2956 (2009).
[101] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu and C. H. Voon, “Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence.,” Procedia Engineering 184, 469–477 (2017).
[102] A. K. Geim and K. S. Novoselov, “The rise of graphene.,” Nature Materials 6 3, 183–191 (2007).
[103] S. Pei and H. M. Cheng, “The reduction of graphene oxide.,” Carbon 50 9, 3210–3228 (2012).
[104] T. Ji, Y. Hua, M. Sun and N. Ma, “The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation.,” Carbon 54, 412–418 (2013).
[105] J. M. Tour, “Top-down versus bottom-up fabrication of graphene-based electronics.,” Chemistry of Materials 26 1, 163–171 (2014).
[106] S. F. Kiew, L. V. Kiew, H. B. Lee, T. Imae and L. Y. Chung, “Assessing biocompatibility of graphene oxide-based nanocarriers: A review.,” Journal of Controlled Release 226, 217–228 (2016).
[107] R. Giovannetti, E. Rommozzi, M. Zannotti and C. A. D’Amato, “Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes.,” Catalysts 7 10, 305 (2017).
[108] X. Zheng, Y. Peng, Y. Yang, J. Chen, H. Tian, X. Cui and W. Zheng, “Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering.,” Journal of Raman Spectroscopy 48 1, 97–103 (2017).
[109] D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, The chemistry of graphene oxide, 39, . (2009).
[110] L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure.,” Ber. Dtsch. Chem. Ges. 31 2, 1481–1487 (1898).
[111] W. Hummers and R. Offeman, “Preparation of Graphitic Oxide.,” J. Am. Chem. Soc. 80, 1339 (1958).
[112] O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials.,” Small 6 6, 711–723 (2010).
[113] Z. Lu, G. Chen, W. Hao, G. Sun and Z. Li, “Mechanism of UV-assisted TiO2/reduced graphene oxide composites with variable photodegradation of methyl orange.,” RSC Advances 5 89, 72916–72922 (2015).
[114] M. Jabeen, M. Ishaq, W. Song, L. Xu, I. Maqsood and Q. Deng, “UV-Assisted Photocatalytic Synthesis of ZnO-Reduced Graphene Oxide Nanocomposites with Enhanced Photocatalytic Performance in Degradation of Methylene Blue.,” ECS Journal of Solid State Science and Technology 6 4, M36–M43 (2017).
[115] S. R. Kim, M. K. Parvez and M. Chhowalla, “UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells.,” Chemical Physics Letters 483 1–3, 124–127 (2009).
[116] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.,” Carbon 45 7, 1558–1565 (2007).
[117] A. A. Dubale, W.-N. Su, A. G. Tamirat, C.-J. Pan, B. A. Aragaw, H.-M. Chen, C.-H. Chen and B.-J. Hwang, “The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting.,” J. Mater. Chem. A 2 43, 18383–18397 (2014).
[118] H. Gu, C. Dong, P. Chen, D. Bao, A. Kuang and X. Li, “Growth of layered perovskite Bi4Ti3O12 thin films by sol–gel process.,” Journal of Crystal Growth 186 3, 403–408 (1998).
[119] R. C. Pawar, V. Khare and C. S. Lee, “Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light.,” Dalton Transactions 43 33, 12514–12527 (2014).
[120] M. Ghorbani, H. Abdizadeh and M. R. Golobostanfard, “Reduction of Graphene Oxide via Modified Hydrothermal Method.,” Procedia Materials Science 11 2009, 326–330 (2015).
[121] X. Du and Y. Xu, “Formation of Al2O3-Bi4Ti3O12 nanocomposite oxide films on low-voltage etched aluminum foil by sol-gel processing.,” Surface and Coatings Technology 202 10, 1923–1927 (2008).
[122] P. B. Arthi G and L. BD, “A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial.,” Journal of Nanomedicine & Nanotechnology 06 01, 1–4 (2015).
[123] T. G. Vladkova, I. A. Ivanova, A. D. Staneva, M. G. Albu, A. S. A. Shalaby, T. I. Topousova and A. S. Kostadinova, “Preparation and Biological Activity of New Collagen Composites Part II : Collagen / Reduced Graphene Oxide Composites.,” 5 1, 1–9 (2017).
[124] Z. Chen, H. Jiang, W. Jin and C. Shi, “Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed {001} facets for Rhodamine B degradation.,” Applied Catalysis B: Environmental 180, 698–706 (2016).
[125] S. J. Kerber, J. J. Bruckner, K. Wozniak, S. Seal, S. Hardcastle and T. L. Barr, “The nature of hydrogen in x‐ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding.,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 14 3, 1314–1320 (1996).
[126] A. Ermolieff, A. Chabli, F. Pierre, G. Rolland, D. Rouchon, C. Vannuffel, C. Vergnaud, J. Baylet and M. N. Séméria, “XPS, Raman spectroscopy, X-ray diffraction, specular X-ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization.,” Surface and Interface Analysis 31 3, 185–190 (2001).
[127] N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.,” Nature Communications 4, 1452–1458 (2013).
[128] P. Serp and J. L. Figueiredo, Carbon Materials for Catalysis. John Wiley & Sons, (2009).
[129] D. P. Dutta and A. K. Tyagi, “Facile sonochemical synthesis of Ag modified Bi4Ti3O12nanoparticles with enhanced photocatalytic activity under visible light.,” Materials Research Bulletin 74, 397–407 (2016).
[130] B. Weng, F. Xu and J. Xu, “Synthesis of hierarchical Bi2O3/Bi4Ti3O12p-n junction nanoribbons on carbon fibers from (001) facet dominated TiO2nanosheets.,” RSC Advances 4 100, 56682–56689 (2014).
[131] S. Yu, X. Wang, R. Zhang, T. Yang, Y. Ai, T. Wen, W. Huang, T. Hayat, A. Alsaedi and X. Wang, “Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation.,” Scientific Reports 7 November 2016, 1–10 (2017).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw