參考文獻 |
[1] 吳奕翰. (2016). 超高性能纖維混凝土結構構件之剪力行為與設計探討. 成功大學土木工程學系學位論文, 1-160.
[2] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
[3] Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. Structural Journal, 89(2), 176-184.
[4] ACI (American Concrete Institute). (2014). Building code requirements for reinforced concrete. ACI 318-14.
[5] Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Structural Journal, 103(4), 614.
[6] Canadian Standards Association. (2004). Design of concrete structures. Mississauga, Ont.: Canadian Standards Association.
[7] Choi, K. K., Hong-Gun, P., & Wight, J. K. (2007). Unified shear strength model for reinforced concrete beams-Part I: Development. ACI Structural Journal, 104(2), 142.
[8] Calvi, P. M., Bentz, E. C., & Collins, M. P. (2017). Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete. ACI Structural Journal, 114(2), 545.
[9] Dei Poli, S., Di Prisco, M., & Gambarova, P. G. (1992). Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete. structural Journal, 89(6), 665-675.
[10] Fenwick, R. C., & Pauley, T. (1968). Mechanism of shear resistance of concrete beams. Journal of the Structural Division, 94(10), 2325-2350.
[11] Henager C. H. and Doherty T. J. (1976). Analysis of Reinforced Fibrous Concrete Beams. Proceeding, ASCE. 102(1): 177-188.
[12] Hsu, T. T. (1988). Softened truss model theory for shear and torsion. Structural Journal, 85(6), 624-635.
[13] Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal,
[14] Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
[15] Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
[16] Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
[17] Hung, C. C., & Li, S. H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
[18] Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
[19] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
[20] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
[21] Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.107(6).
[22] Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
[23] Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
[24] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[25] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[26] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
[27] Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
[28] Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
[29] Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
[30] Kani, G. (1967, March). How safe are our large reinforced concrete beams?. In Journal Proceedings (Vol. 64, No. 3, pp. 128-141).
[31] Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
[32] Mau, S. T., & Hsu, T. T. (1987). Shear strength prediction for deep beams with web reinforcement. Structural Journal, 84(6), 513-523.
[33] Muttoni, A., & Fernández Ruiz, M. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 2(ARTICLE).
[34] Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. Structural Journal, 84(3), 216-227.
[35] Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 120(8), 2310-2329.
[36] Pang, X. B. D., & Hsu, T. T. (1996). Fixed angle softened truss model for reinforced concrete. Structural Journal, 93(2), 196-208.
[37] Qi, J., Ma, Z. J., & Wang, J. (2016). Shear strength of UHPFRC beams: Mesoscale fiber-matrix discrete model. Journal of Structural Engineering, 143(4), 04016209.
[38] Sharma, A. K. (1986, July). Shear strength of steel fiber reinforced concrete beams. In Journal Proceedings (Vol. 83, No. 4, pp. 624-628).
[39] Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.
[40] Wille, K., & Naaman, A. E. (2012). Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. ACI Materials Journal, 109(4).
|