進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201812093900
論文名稱(中文) 超高性能纖維混凝土梁構件之剪力行為研究
論文名稱(英文) Shear behavior of ultra-high performance fiber reinforced concrete beams without stirrup
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 溫國威
研究生(英文) Kuo-Wei Wen
學號 N66051184
學位類別 碩士
語文別 中文
論文頁數 212頁
口試委員 指導教授-洪崇展
口試委員-劉光晏
口試委員-王勇智
口試委員-李宏仁
口試委員-杜怡萱
中文關鍵字 剪力行為  鋼筋混凝土梁  超高性能纖維混凝土  剪力預測公式  粒料互鎖  剪力跨深比  鋼纖維 
英文關鍵字 shear behavior  Ultra-High Performance Fiber Reinforce Concrete (UHPFRC)  shear strength shear strength approach 
學科別分類
中文摘要 鋼筋混凝土在過去已有相當程度的發展,大多專注於一般傳統混凝土的研究,隨著時代演進,高強度與超高強度混凝土配比設計逐漸成熟,其混凝土抗壓強度為一般混凝土的數倍,但也伴隨著其構件行為更難以掌握。而在高強度與超高強度混凝土中加入鋼纖維,有效增強混凝土抗拉強度及改善整體拉力行為。本研究探討超高性能纖維混凝土(UHPFRC)與超高性能混凝土(UHPC)梁試體,在四點載重下剪力行為及承載極限強度,設計了18支梁試體進行試驗,其中參數有纖維體積含量(V_f=0%、0.75%、1.5%)、有無粗粒料、剪力跨深比(a⁄d=1.5、2.4、3.3)。實驗結果顯示,加入0.75%與1.5%纖維體積比能有效提升剪力強度。本文章建議理論預測公式能有效預測不同剪力跨深比與不同纖維含量之超高性能纖維混凝土梁構件之剪力強度,並建立粗粒料的有效互鎖深度預評估公式。
英文摘要 Ultra-high performance fiber reinforced concrete (UHPFRC) has superior strength and ductility, which together turn into enhanced shear strength and crack-width control ability. This study discusses the shear resistance of ultra-high performance fiber reinforced concrete beams with different shear span-depth ratios. Four-point load tests are performed to investigate the shear behaviors of UHPFRC. The experimental results show that fibers have a significant contribution to the shear strength of the beams. In addition, the ultimate shear strength of the beam is closely related to the fiber content and the shear span-depth ratio. Multiple performance measures are employed to assess the behavior of the UHPFRC beams. In this study, it proposed an analytical approach and verified by experimental results. The verify results indicate that the approach has high reliability to predict the ultimate shear strength for UHPFRC beam.
論文目次 摘要 I
誌謝 VII
目錄 VIII
表目錄 XV
圖目錄 XVII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法 1
第二章 文獻回顧 2
2.1 高性能纖維混凝土 2
2.2 超高性能纖維混凝土 3
2.3 無箍筋之鋼筋混凝土梁構件剪力行為 4
2.3.1 鋼筋混凝土梁構件之剪力傳遞機制 5
2.3.2 破壞模式 6
2.3.2.1 對角剪力開裂破壞(Diagonal tension failure) 6
2.3.2.2 剪力壓碎破壞(Shear compression failure) 6
2.3.2.3 拱效應破壞模式(Arch action) 7
2.3.3 壓力區混凝土貢獻 7
2.3.4 剪力跨深比效應(Shear span-depth ratio) 10
2.3.5 粗粒料互鎖效應(Aggregate interlock) 12
2.3.6 主筋效應(longitude rebar) 13
2.4 剪力行為理論模型 14
2.4.1 修正壓力場理論(Modify compression field theory) 14
2.4.2 軟化桁架理論(Softened Truss Model Theory) 15
2.5 現有纖維混凝土剪力預測公式 16
2.5.1 Sharma(1987)[38] 16
2.5.2 Narayanan and Darwish(1987)[34] 16
2.5.3 Kwak(2002)[31] 18
2.5.4 Qi(2016)[37] 19
2.5.4.1 纖維貢獻(Vf) 20
2.5.4.2 混凝土貢獻(Vc) 26
第三章 試驗規劃與方法 29
3.1 試體材料 29
3.1.1 超高性能纖維混凝土 29
3.1.2 鋼筋 37
3.1.3 其他輔助工具 38
3.2 試體規劃 40
3.3 實驗與試體設計 40
3.3.1 試體尺寸 42
3.3.2 斷面設置 42
3.3.2.1 需求強度計算 42
3.3.2.2 斷面鋼筋設置 47
3.3.3 試驗配比 48
3.3.4 加載方式 49
3.4 試驗儀器與設備 49
3.4.1 力量加載儀器 49
3.4.1.1 500噸萬能試驗機 49
3.4.1.2 100噸萬能試驗機 49
3.4.1.3 100噸動態萬能試驗機 49
3.4.1.4 50噸萬能試驗機 49
3.4.2 應變與變位量測系統 51
3.4.2.1 電阻式應變計 51
3.4.2.2 表面變形測量(NDI Optotrak ® Certus HD) 52
3.4.2.3 位移計(Displacement Transducer) 53
3.4.3 混凝土拌合 55
3.5 試體製作 55
3.5.1 應變計黏貼 55
3.5.2 應變計與NDI Marker位置 58
3.5.3 梁試體綁紮 60
3.5.4 試體灌漿 62
3.5.4.1 事前準備 62
3.5.4.2 混凝土拌合 64
3.5.4.3 混凝土澆置 65
3.5.5 拆模與養護 67
3.6 試驗流程 68
3.6.1 前置作業 68
3.6.2 試體架設 68
3.6.3 測量裝置架設 69
3.6.4 施加載重 70
3.6.5 影像紀錄與資料點對齊 71
3.7 材料試驗 72
3.7.1 圓柱抗壓試驗 72
3.7.2 狗骨頭抗拉試驗 73
3.7.3 鋼筋拉力試驗 74
第四章 試驗結果 75
4.1 材料試驗 75
4.1.1 混凝土抗壓強度 75
4.1.2 混凝土抗拉強度 82
4.1.3 鋼筋拉力強度 90
4.2 梁試驗結果 91
4.2.1 數據處理與計算方法 91
4.2.1.1 載重與梁中撓度 91
4.2.1.2 剪應力與剪應變 91
4.2.1.3 鋼筋應變 93
4.2.2 長剪力跨深比 (a/d=3.3) 93
4.2.2.1 B3.3-F0-Y 93
4.2.2.2 B3.3-F075-Y 97
4.2.2.3 B3.3-F150-Y 101
4.2.2.4 B3.3-F0-N 105
4.2.2.5 B3.3-F075-N 109
4.2.2.6 B3.3-F150-N 113
4.2.3 中剪力跨深比 (a/d=2.4) 117
4.2.3.1 B2.4-F0-Y 117
4.2.3.2 B2.4-F075-Y 121
4.2.3.3 B2.4-F150-Y 125
4.2.3.4 B2.4-F0-N 129
4.2.3.5 B2.4-F075-N 133
4.2.3.6 B2.4-F150-N 137
4.2.4 短剪力跨深比 (a/d=1.5) 141
4.2.4.1 B1.5-F0-Y 141
4.2.4.2 B1.5-F075-Y 145
4.2.4.3 B1.5-F150-Y 149
4.2.4.4 B1.5-F0-N 153
4.2.4.5 B1.5-F075-N 157
4.2.4.6 B1.5-F150-N 161
4.2.5 梁試驗結果總表 165
第五章 綜合討論 166
5.1 梁之最大剪力強度 166
5.1.1 鋼纖維貢獻 168
5.1.2 粗粒料貢獻 171
5.1.3 剪力跨深比貢獻 173
5.2 實驗結果公式比較 176
5.2.1 ACI318-14 Code(22.5.5.1)[4] 177
5.2.2 CSA-A231.3-04 (11.3.4) 178
5.2.3 其他預測公式 179
5.3 剪力破壞行為 179
5.3.1 破壞模式 179
5.3.2 裂縫發展角度 181
5.4 剪應力與剪應變曲線 182
第六章 建議剪力預測公式 183
6.1 混凝土壓力區貢獻強度(Vc) 184
6.1.1 軸壓效應(Mau與Hsu) [32] 184
6.1.2 對角剪拉控制模式推導(Diagonal tension failure) 186
6.1.3 剪力壓碎控制模式推導(Shear compression failure) 188
6.1.4 壓力區深度 190
6.1.5 計算壓力區總剪力貢獻 192
6.1.6 壓力區貢獻計算步驟 192
6.2 纖維貢獻(Vf) 193
6.3 粒料互鎖貢獻(Va) 194
6.3.1 基本模型 194
6.3.2 公式推導(軸力效應) 195
6.3.3 裂縫寬度計算 197
6.3.4 粗粒料有效互鎖深度 197
6.3.5 總粗粒料互鎖力貢獻計算(Va) 199
6.3.6 粗粒料互鎖計算步驟與迭代 199
6.4 建議公式驗證 200
6.4.1 含粗粒料試體 200
6.4.2 無粗粒料試體 201
6.4.3 比較結果討論 202
6.5 Qi[37]與吳弈翰[1]試體驗證 203
6.6 驗證比較 204
第七章 結論與建議 205
7.1 結論 205
7.2 建議 207
參考文獻 208
參考文獻 [1] 吳奕翰. (2016). 超高性能纖維混凝土結構構件之剪力行為與設計探討. 成功大學土木工程學系學位論文, 1-160.
[2] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
[3] Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. Structural Journal, 89(2), 176-184.
[4] ACI (American Concrete Institute). (2014). Building code requirements for reinforced concrete. ACI 318-14.
[5] Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Structural Journal, 103(4), 614.
[6] Canadian Standards Association. (2004). Design of concrete structures. Mississauga, Ont.: Canadian Standards Association.
[7] Choi, K. K., Hong-Gun, P., & Wight, J. K. (2007). Unified shear strength model for reinforced concrete beams-Part I: Development. ACI Structural Journal, 104(2), 142.
[8] Calvi, P. M., Bentz, E. C., & Collins, M. P. (2017). Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete. ACI Structural Journal, 114(2), 545.
[9] Dei Poli, S., Di Prisco, M., & Gambarova, P. G. (1992). Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete. structural Journal, 89(6), 665-675.
[10] Fenwick, R. C., & Pauley, T. (1968). Mechanism of shear resistance of concrete beams. Journal of the Structural Division, 94(10), 2325-2350.
[11] Henager C. H. and Doherty T. J. (1976). Analysis of Reinforced Fibrous Concrete Beams. Proceeding, ASCE. 102(1): 177-188.
[12] Hsu, T. T. (1988). Softened truss model theory for shear and torsion. Structural Journal, 85(6), 624-635.
[13] Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal,
[14] Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
[15] Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
[16] Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
[17] Hung, C. C., & Li, S. H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
[18] Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
[19] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
[20] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
[21] Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.107(6).
[22] Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
[23] Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
[24] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[25] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[26] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
[27] Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
[28] Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
[29] Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
[30] Kani, G. (1967, March). How safe are our large reinforced concrete beams?. In Journal Proceedings (Vol. 64, No. 3, pp. 128-141).
[31] Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
[32] Mau, S. T., & Hsu, T. T. (1987). Shear strength prediction for deep beams with web reinforcement. Structural Journal, 84(6), 513-523.
[33] Muttoni, A., & Fernández Ruiz, M. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 2(ARTICLE).
[34] Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. Structural Journal, 84(3), 216-227.
[35] Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 120(8), 2310-2329.
[36] Pang, X. B. D., & Hsu, T. T. (1996). Fixed angle softened truss model for reinforced concrete. Structural Journal, 93(2), 196-208.
[37] Qi, J., Ma, Z. J., & Wang, J. (2016). Shear strength of UHPFRC beams: Mesoscale fiber-matrix discrete model. Journal of Structural Engineering, 143(4), 04016209.
[38] Sharma, A. K. (1986, July). Shear strength of steel fiber reinforced concrete beams. In Journal Proceedings (Vol. 83, No. 4, pp. 624-628).
[39] Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.
[40] Wille, K., & Naaman, A. E. (2012). Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. ACI Materials Journal, 109(4).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw