進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201811271300
論文名稱(中文) 使用單光子之半量子協定:半量子金鑰分配與半量子私密比較
論文名稱(英文) Semi quantum protocols using single photons: Semi quantum key distribution and Semi quantum private comparison
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 林柏樺
研究生(英文) Po-Hua Lin
學號 P76054567
學位類別 碩士
語文別 英文
論文頁數 55頁
口試委員 指導教授-黃宗立
口試委員-王智弘
口試委員-楊竣崴
口試委員-蔡家緯
中文關鍵字 量子密碼學  半量子金鑰分配協議  第三方  近乎不誠實  半量子私密比較協議 
英文關鍵字 Quantum Cryptography  Semi-quantum Key Distribution  Third Party  Almost-Dishonest  Semi-quantum private comparison 
學科別分類
中文摘要 本論文試圖利用單光子之量子特性,在”半量子”環境中設計安全且輕量化的協定。本論文首先發現在2013年孫等人[41]所提出之極輕量半量子金鑰分配協定存在安全性問題,隨後提出了單光子和Bell糾結態之關聯性的數學式,並根據這些關係式,提出了一個三方的半量子金鑰分配協定與一個半量子私密比較協定,分別在不誠實、近乎不誠實的第三方的幫助下,使兩個只具備基本量子能力的「古典」參與者可以安全的分享金鑰或比較秘密。第三方除了不能與任何參與者合作之外可以執行任何攻擊以企圖獲取「古典」參與者的秘密信息。在上述兩個協定中,第三方僅需產生單光子而非糾纏量子。此外,藉由單光子之基本性質,進一步提出了一個只使用單光子的三方的半量子金鑰分配協定,此協定大幅減少了不誠實的第三方所需具備的量子能力,並使量子金鑰分配協定更實用於現今的環境。此外,本文提出的協定可以經由些微的調整而適用於不同的安全議題,如陷阱機制、陌生人環境與多人環境。
英文摘要 This thesis tries to use the properties of the single photons to design secure and lightweight protocol in the “semi quantum” environment. This thesis first points out that an SQKD protocol was proposed by Sun et al. [41] has a security loophole. Then, inspired by Sun et al.’s protocol, we propose the equations which use the correlation between single photons and Bell measurement. According to these equations, we propose a mediated SQKD protocol and an SQPC protocol, which allow two “classical” participants to share a secret key with each other or to compare the equality of their secrets with the help of a dishonest Third-Party (TP) and an almost-dishonest TP, respectively. The TP in these protocols can perform any possible attacks except colluding with any participant to reveal participants’ secrets. In the above two protocols, TP only needs to generate single photons instead of generating entangled states (Bell states). Moreover, by using the fundamental properties of single photons, we further propose a mediated SQKD protocol which allows all participants (include a dishonest TP) only to use single photons. This protocol not only reduces the requirement of the quantum devices for a dishonest TP but also makes the QKD protocols more practice. Besides, the proposed protocols can be applied to other security issues (i.e., the trap comparison method, the stranger environment, and the multi-party environment) with small adjustments.
論文目次 中文摘要 iii
Abstract iv
誌 謝 vi
Content vii
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Motivation and Contribution 3
1.3 Thesis Structure 5
Chapter 2 Preliminaries 6
2.1 Properties of single photons 6
2.2 Properties of Bell states [23] 8
2.3 Double CNOT attack 9
2.3.1 Review of Sun et al.’s SQKD protocol [41] 9
2.3.2 Double CNOT attack and a simple improvement on Sun et al.’s SQKD protocol 10
Chapter 3 Mediated Semi Quantum Key Distribution using single photons 14
3.1 Proposed mediated SQKD protocol 14
3.2 Security analyses 17
3.3 Comparison 23
Chapter 4 Semi Quantum Private Comparison using single photons 25
4.1 Proposed SQPC protocol 25
4.2 Security analyses 29
4.3 Comparison 34
Chapter 5 Semi-quantum Mediated Key Distribution (SQMKD) 36
5.1 Proposed SQMKD protocol 36
5.2 Security analyses 39
5.3 Comparison 43
Chapter 6 Adjustments to suit other security issues 45
Chapter 7 Conclusions 49
Bibliography 50
參考文獻 [1] Peter W Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pp. 124-134, 1994.
[2] Charles H Bennett and Gilles Brassard, "Quantum cryptography: Public key distribution and coin tossing," Theoretical computer science, vol. 560, pp. 7-11, 1984.
[3] Lo Hoi-Kwong, Xiongfeng Ma and Kai Chen, "Decoy state quantum key distribution." Physical review letters 94.23: 230504 (2005).
[4] Bennett Charles H, "Quantum cryptography using any two nonorthogonal states." Physical review letters 68.21: 3121 (1992).
[5] Bennett Charles H., Gilles Brassard and N. David Mermin, "Quantum cryptography without Bell’s theorem." Physical Review Letters 68.5: 557 (1992).
[6] Long Gui-Lu and Xiao-Shu Liu, "Theoretically efficient high-capacity quantum-key-distribution scheme." Physical Review A 65.3: 032302 (2002).
[7] Nicolas J. Cerf, Mohamed Bourennane, Anders Karlsson and Nicolas Gisin, "Security of quantum key distribution using d-level systems." Physical Review Letters 88.12: 127902 (2002).
[8] Lo Hoi-Kwong, Marcos Curty and Bing Qi, "Measurement-device-independent quantum key distribution." Physical review letters 108.13: 130503 (2012).
[9] Fre´de´ric Grosshans, Gilles Van Assche, Je´roˆme Wenger, Rosa Brouri, Nicolas J. Cerf and Philippe Grangier, "Quantum key distribution using gaussian-modulated coherent states." Nature 421.6920: 238 (2003).
[10] Boström Kim and Timo Felbinger, "Deterministic secure direct communication using entanglement." Physical Review Letters 89.18: 187902 (2002).
[11] Deng Fu-Guo and Gui Lu Long, "Secure direct communication with a quantum one-time pad." Physical Review A 69.5: 052319 (2004).
[12] Chuan Wang, Fu-Guo Deng, Yan-Song Li, Xiao-Shu Liu and Gui Lu Long, "Quantum secure direct communication with high-dimension quantum superdense coding." Physical Review A 71.4: 044305 (2005).
[13] Beller Mara, “Quantum dialogue: The making of a revolution.” University of Chicago Press, 2001.
[14] Nguyen Ba An, "Quantum dialogue." Physics Letters A 328.1: 6-10 (2004).
[15] Hillery Mark, Vladimír Bužek, and André Berthiaume, "Quantum secret sharing." Physical Review A 59.3: 1829 (1999).
[16] Li Xiao, Gui Lu Long, Fu-Guo Deng and Jian-Wei Pan, "Efficient multiparty quantum-secret-sharing schemes." Physical Review A 69.5: 052307 (2004).
[17] Karlsson, Anders, Masato Koashi, and Nobuyuki Imoto, "Quantum entanglement for secret sharing and secret splitting." Physical Review A 59.1: 162 (1999).
[18] Yan Feng-Li and Ting Gao, "Quantum secret sharing between multiparty and multiparty without entanglement." Physical Review A 72.1: 012304 (2005).
[19] Yang Yu-Guang and Qiao-Yan Wen, "An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement." Journal of Physics A: Mathematical and Theoretical 42.5: 055305 (2009).
[20] Tseng Hsin-Yi, Jason Lin and Tzonelih Hwang, "New quantum private comparison protocol using EPR pairs." Quantum Information Processing 11.2: 373-384 (2012).
[21] Brian Julsgaard, Jacob Sherson, J Ignacio Cirac, Jaromír Fiurášek, and Eugene S Polzik, "Experimental demonstration of quantum memory for light," Nature, vol. 432, pp. 482-486, 2004.
[22] Xing-Can Yao, Tian-Xiong Wang, Ping Xu, He Lu, Ge-Sheng Pan, Xiao-Hui Bao, Cheng-Zhi Peng, Chao-Yang Lu, Yu-Ao Chen and Jian-Wei Pan, "Observation of eight-photon entanglement," Nature Photonics, vol. 6, pp. 225-228, 2012.
[23] Michael A Nielsen and Isaac Chuang, "Quantum computation and quantum information," ed: AAPT, 2002.
[24] Michel Boyer, Dan Kenigsberg and Tal Mor, "Quantum key distribution with classical Bob." Quantum, Nano, and Micro Technologies, 2007. ICQNM'07. First International Conference on. IEEE, 2007.
[25] Michel Boyer, Ran Gelles, Dan Kenigsberg and Tal Mor, "Semiquantum key distribution." Physical Review A 79.3: 032341 (2009).
[26] Xiangfu Zou, Daowen Qiu, Lvzhou Li, Lihua Wu and Lvjun Li, "Semiquantum-key distribution using less than four quantum states." Physical Review A 79.5: 052312 (2009).
[27] W Jian, Z Sheng, Z Quan, T Chao-Jing, "Semiquantum key distribution using entangled states." Chinese Physics Letters 28.10: 100301 (2011).
[28] Krawec Walter O, "Mediated semiquantum key distribution." Physical Review A 91.3: 032323 (2015).
[29] Li Qin, Wai Hong Chan and Shengyu Zhang, "Semiquantum key distribution with secure delegated quantum computation." Scientific reports 6: 19898 (2016).
[30] Kun-Fei Yu, Chun-Wei Yang, Ci-Hong Liao and Tzonelih Hwang, "Authenticated semi-quantum key distribution protocol using Bell states." Quantum Information Processing 13.6: 1457-1465 (2014).
[31] Xiangfu Zou, Daowen Qiu, Shengyu Zhang and Paulo Mateus, "Semiquantum key distribution without invoking the classical party’s measurement capability." Quantum Information Processing 14.8: 2981-2996 (2015).
[32] Liu Zhi‐Rou and Tzonelih Hwang, "Mediated Semi‐Quantum Key Distribution Without Invoking Quantum Measurement." Annalen der Physik 530.4: 1700206 (2018).
[33] Yang Chun-Wei and Tzonelih Hwang, "Efficient key construction on semi-quantum secret sharing protocols." International Journal of Quantum Information 11.05: 1350052 (2013).
[34] Li Qin, W. H. Chan and Dong-Yang Long, "Semiquantum secret sharing using entangled states." Physical Review A 82.2: 022303 (2010).
[35] Jian Wang, Sheng Zhang, Quan Zhang and Chao-Jing Tang, "Semiquantum secret sharing using two-particle entangled state." International Journal of Quantum Information 10.05: 1250050 (2012).
[36] Li Lvzhou, Daowen Qiu and Paulo Mateus, "Quantum secret sharing with classical Bobs." Journal of Physics A: Mathematical and Theoretical 46.4: 045304 (2013).
[37] Luo Yi-Ping and Tzonelih Hwang, "Authenticated semi-quantum direct communication protocols using Bell states." Quantum Information Processing 15.2: 947-958 (2016).
[38] Zou XiangFu and DaoWen Qiu, "Three-step semiquantum secure direct communication protocol." Science China Physics, Mechanics & Astronomy 57.9: 1696-1702 (2014).
[39] Shukla Chitra, Kishore Thapliyal, and Anirban Pathak, "Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue." Quantum Information Processing 16.12: 295 (2017).
[40] Chou Wen-Han, Tzonelih Hwang and Jun Gu, "Semi-quantum private comparison protocol under an almost-dishonest third party." arXiv preprint arXiv:1607.07961 (2016).
[41] Sun Zhi-Wei, Rui-Gang Du and Dong-Yang Long, "Quantum key distribution with limited classical bob." International Journal of Quantum Information 11.01: 1350005 (2013).
[42] Michel Boyer, Dan Kenigsberg and Tal Mor, "Quantum key distribution with classical Bob," Physical review Letters vol. 99, p. 140501, 2007.
[43] Cai Qing-Yu, "Eavesdropping on the two-way quantum communication protocols with invisible photons." Physics Letters A 351.1-2 : 23-25 (2006).
[44] Fu-Guo Deng, Xi-Han Li, Hong-Yu Zhou and Zhan-jun Zhang, "Improving the security of multiparty quantum secret sharing against Trojan horse attack." Physical Review A 72.4: 044302 (2005).
[45] Shih-Min Hung, Sheng-Liang Hwang, Tzonelih Hwang and Shih-Hung Kao, "Multiparty quantum private comparison with almost dishonest third parties for strangers." Quantum Information Processing 16.2: 36 (2017).
[46] Huang, Sheng-Liang, Tzonelih Hwang and Prosanta Gope, "Multi-party quantum private comparison with an almost-dishonest third party." Quantum Information Processing 14.11: 4225-4235 (2015).
[47] Bennett Charles H., Gilles Brassard and Jean-Marc Robert, "Privacy amplification by public discussion." SIAM journal on Computing 17.2: 210-229 (1988).
[48] Charles H. Bennett, Gilles Brassard, Claude Crepeau and Ueli M. Maurer, "Generalized privacy amplification." IEEE Transactions on Information Theory 41.6 : 1915-1923 (1995).
[49] Yang C.-W., Hwang T. and Luo Y.-P., “Enhancement on “quantum blind signature based on two-state vector formalism”.” Quantum Inf. Process. 12(1), 109–117 (2013)
[50] Yang C.-W. and Hwang T., “Quantum dialogue protocols immune to collective noise.” Quantum Inf. Pro-cess. 12(6), 2131–2142 (2013)
[51] Yang C.-W. and Hwang, T., “Improved QSDC protocol over a collective-dephasing noise channel.” Int. J. Theor. Phys. 51(12), 3941–3950 (2012)
[52] Jian-Wei Pan, Dik Bouwmeester, Harald Weinfurter and Anton Zeilinger, "Experimental entanglement swapping: entangling photons that never interacted." Physical Review Letters 80.18: 3891 (1998).
[53] Żukowski M., Zeilinger A., Horne M. A., Ekert A. K., "``Event-ready-detectors'Bell experiment via entanglement swapping." Physical Review Letters 71: 4287-4290 (1993).
[54] Zhi wei Sun, Jian ping Yu, Ping Wang, Ling ling Xu and Chun hui Wu, "Quantum private comparison with a malicious third party." Quantum Information Processing 14.6 : 2125-2133 (2015).
[55] Gu Jun, Chih-Yung Ho and Tzonelih Hwang, "Statistics attack on ‘quantum private comparison with a malicious third party’and its improvement." Quantum Information Processing 17.2: 23 (2018).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw