進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201714321200
論文名稱(中文) 核心肌群穩定性及功能性檢測與自行車運動功率輸出的相關
論文名稱(英文) Correlations between cycling power output and functional related measurements of core muscles
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 105
學期 2
出版年 106
研究生(中文) 姚仲柏
研究生(英文) Chung-Po Yao
學號 RB6041061
學位類別 碩士
語文別 中文
論文頁數 55頁
口試委員 指導教授-黃滄海
召集委員-吳家慶
口試委員-王振興
中文關鍵字 自行車  慣性感測器  功率  核心肌群 
英文關鍵字 Cycling  Inertia sensor  Power  Core muscles 
學科別分類
中文摘要 背景:自行車運動是近年來日益受到大眾觀迎的運動項目之一,相關的運動科技產品及運動科學量測亦愈來愈受到關注。影響騎乘表現的因素眾多,其中,核心肌群的穩定可預防頸、肩、腰的運動傷害;此外,研究顯示,自行車手騎乘時,有部份生理上的能量的支出會因核心肌群的功能不佳,而影響作功效率,造成能量的浪費,而對運動表現產生負面的影響。研究目的:探討核心肌群的穩定性與其他身體的功能性量測值與自行車騎乘表現的相關。方法:(1)受試者:本研究招募21位成年男子自行車手,其中包含入門、業餘與專業車。在參與實驗檢測之前,受試者進行了騎乘經驗的調查,以及身高、體重、體脂、核心肌力穩定性、左右腳肌耐力與下背柔軟度等各項功能性檢測(2)實驗設計:裝設踏板功率計於受試者個人使用之自行車,同時,配戴及九軸慣性感測器在受試者軀幹、車頭以及座管,以測量室內及室外騎乘時功率計參數及慣性參數(3)量測指標:功率、心率、迴轉數、踩踏左右平衡、左腳有效扭力、右腳有效扭力、左腳踩踏順暢度、右腳踩踏流暢度、左腳踩踏施力偏移、右腳踩踏施力偏移等(4)統計方法:以成對樣本T檢定比較室內及室外之差別,再以逐步迴歸分析功率計參數與體型、功能性檢測、騎乘經驗之間的相關。結果:成對樣本T檢定結果顯示,室外騎乘會因環境影響造成生理因素及騎乘技能上的負擔,室外騎乘時的平均心率、最高踏頻顯著高於室內騎乘;逐步迴歸分析主要發現為,核心穩定度分數與騎乘表現的各項參數達顯相關,包含:核心穩定分數亦與平均心率及累積心率達顯著負相關,此外,核心穩定分數亦與有效扭力與踩踏順暢度上顯著正相關。結論:本研究證實核心穩定性對於自行車運動騎乘之重要性,可減少能量之浪費以及增進騎乘效率,依本研究之結果,建議自行車運動員可透過強化核心肌群的各種訓練來提昇騎乘效率。
英文摘要 Introduction: Cycling is one of the most popular sports in recent years. Sports science equipment as well as wearable devices are gaining more and more attention. The stability of core muscle could prevention injuries of neck, shoulder and lower back. Moreover, previous studies suggested that core muscles of many cyclists do not strong enough to maintain the stability of body as well as bike, which then cause energy losing and negative effects on performance. Purpose: To investigate the relationship between 1) stability of core muscle and various functional measurement and 2) indices related to cycling power output and riding performance. Method: (1) Participants: Twenty-one beginner, amateur and athletic male cyclists participated the current study. Before performing the cycling test, various body measurements (e.g. body height, body weight, and body fat percentage) and functional tests (e.g. core muscle stability, leg muscle endurance and lower back flexibility) were taken from all subjects. (2) Experimental design: In order to measure the power and motion related parameters during cycling test, a Garmin Vector 2 power meter was installed on the pedals of cyclist’s bike, and three 9-axis inertia devices were attached, respectively, on stem and seatpost of the bike and torso of the rider. (3) Measuring parameters included Power Output, Heart Rate, Cadence, Left/Right Balance, Left Torque Effectiveness (Left TE), Right Torque Effectiveness (Right TE), Left Pedal Smoothness (Left PS), Right Pedal Smoothness (Right PS), Left Platform Center Offset (Left PCO), Right Platform Center Offset (Right PCO). (4) Statistics method: T-test was used for comparing indices measured between outdoor and indoor cycling tests. Stepwise regression was use for analyzing the relationship between indices measured from cycling test and subject measurement (e.g. body measurements and functional measurements). Result: According to statistics result, environmental factors had influence on physiological factors and riding condition in outdoor riding. Parameters of outdoor cycling test, including average heart rate and highest cadence, were significantly higher than those parameters measured from indoor cycling test. In stepwise regression, core stability score was significantly correlated with mean heart rate and cumulated heart rate, torque effectiveness and pedal smoothness. Conclusion: This study verified the benefit of core stability for cycling performance. A better core muscle stability would reduce the waste of energy and upgrade the skill and effectiveness during cycling. Therefore, we suggest cyclists include core muscle training for ameliorating cycling performance.
論文目次 目錄
摘 要 I
Summary II
謝誌 V
目錄 XV
表目錄 XVIII
附錄表目錄 XIX
圖目錄 XX
附錄圖目錄 XXI
第壹章 、緒論 1
第一節 研究背景 1
第二節 研究目的 2
第三節 研究假設 2
第四節 名詞操作性定義 3
第五節 研究限制 3
第貳章 、文獻探討 4
第一節 核心肌群與自行車運動表現的影響 4
一、 核心肌群的定義 4
二、 核心肌群與運動表現的關聯 4
三、 核心肌群功能與自行車運動的關聯 5
第二節 自行車之功率輸出量測與影響因子 5
第三節 核心肌群之功能對自行車功率輸出的影響 6
一、 核心肌群功能如何反映在自行車騎乘表現 6
二、 車體與騎乘者振動與擺盪與核心穩定性的關聯 6
第四節 加速度訊號與自行車的相關 7
一、 以慣性原件來測量振動與擺盪 7
二、 自行車的振動與擺盪 8
第五節 總結 9
第參章 研究方法 10
第一節 研究對象 10
第二節 施測流程及測量方法 10
一、 施測流程 10
二、 測量方法與工具 11
第三節 統計 24
第肆章 結果 25
第一節 受試者之描述性統計 25
第二節 室內、外騎乘參數成對樣本比較 26
一、 室內、外騎乘之全程比較 26
二、 室內室外騎乘之分段比較:每階段騎乘取固定累積作功量之範圍內的數據分析 27
第三節 以逐步迴歸分析不同功率階段的騎乘者體型/功能性檢測參數與功率計參數之間的相關 29
一、 100W的功率階段 29
二、 150W的功率階段 31
三、 200W的功率階段 34
第伍章 討論 37
第一節 室內、外騎乘功率計參數比較 37
第二節 室內、外騎乘之差異與各項受試者體型及功能性檢測之逐步迴歸分析 39
一、 100W的功率階段 39
二、 150W的功率階段 41
三、 200W的功率階段 43
第三節 核心與騎乘表現 45
第四節 慣性原件放置位置、數據意義與未來可應用性 46
第陸章 結論與建議 48
附錄一 49
一、 軀幹擺盪加速度值成對樣本比較 49
二、 車頭擺盪加速度值成對樣本比較 51
三、 座管擺盪加速度值成對樣本比較 52
參考文獻 53



參考文獻 Abt, J. P., Smoliga, J. M., Brick, M. J., Jolly, J. T., Lephart, S. M., & Fu, F. H. (2007). Relationship between cycling mechanics and core stability. The Journal of Strength & Conditioning Research, 21(4), 1300-1304.
Akuthota, V., Ferreiro, A., Moore, T., & Fredericson, M. (2008). Core stability exercise principles. Current Sports Medicine Reports, 7(1), 39-44.
Allen, S., Dudley, G. A., Iosia, M., Stanforth, D., & Steuerwald, B. (2002). Core strength training. Gatoraide Sports Science Institute, 13(1), 14.
Arokoski, J. P., Valta, T., Airaksinen, O., & Kankaanpää, M. (2001). Back and abdominal muscle function during stabilization exercises. Archives of Physical Medicine and Rehabilitation, 82(8), 1089-1098.
Asplund, C., & Ross, M. (2010). Core stability and bicycling. Current Sports Medicine Reports, 9(3), 155-160.
Behm, D. G., Drinkwater, E. J., Willardson, J. M., & Cowley, P. M. (2010). The use of instability to train the core musculature. Applied Physiology, Nutrition, and Metabolism, 35(1), 91-108.
Bini, R. R., Hume, P. A., & Crofta, J. L. (2011). Effects of saddle height on pedal force effectiveness. Procedia Engineering, (13), 51-55.
Bouten, C. V., Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering, 44(3), 136-147.
Burke, E. (2003). High-tech cycling: Human Kinetics.
Bussmann, J., Veltink, P., Koelma, F., Van Lummel, R., & Stam, H. (1995). Ambulatory monitoring of mobility-related activities: the initial phase of the development of an activity monitor. European Journal of Physical Rehabilitation Medicine, 5(1), 2-7.
Chapman, A. R., Vicenzino, B., Blanch, P., Dowlan, S., & Hodges, P. W. (2008). Does cycling effect motor coordination of the leg during running in elite triathletes? Journal of Science and Medicine in Sport, 11(4), 371-380.
Chavarren, J., & Calbet, J. (1999). Cycling efficiency and pedalling frequency in road cyclists. European Journal of Applied Physiology and Occupational Physiology, 80(6), 555-563.
Coast, J. R., & Welch, H. G. (1985). Linear increase in optimal pedal rate with increased power output in cycle ergometry. European Journal of Applied Physiology and Occupational Physiology, 53(4), 339-342.
Coza, A., Nigg, B. M., & Fliri, L. (2010). Quantification of soft-tissue vibrations in running: Accelerometry versus high-speed motion capture. Journal of Applied Biomechanics, 26(3), 367-372.
Dannenberg, A. L., Needle, S., Mullady, D., & Kolodner, K. B. (1996). Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American Journal of Sports Medicine, 24(6), 747-753.
Davidson, B. S., Madigan, M. L., & Nussbaum, M. A. (2004). Effects of lumbar extensor fatigue and fatigue rate on postural sway. European Journal of Applied Physiology, 93(1-2), 183-189.
Davies, C. (1980). Effect of air resistance on the metabolic cost and performance of cycling. European Journal of Applied Physiology and Occupational Physiology, 45(2-3), 245-254.
Ehrenstein, J. (2015). Core muscle strength and stability test. (https://www.linkedin.com/pulse/core-muscle-strength-stability-test-bill-ray).
Ericson, M. O., Nisell, R., Arborelius, U. P., & Ekholm, J. (1986). Power output and work in different muscle groups during ergometer cycling. European Journal of Applied Physiology and Occupational Physiology, 55(3), 229-235.
Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling. Sports Medicine, 35(4), 285-312.
Fintelman, D., Sterling, M., Hemida, H., & Li, F.-X. (2014). Optimal cycling time trial position models: Aerodynamics versus power output and metabolic energy. Journal of Biomechanics, 47(8), 1894-1898.
Fredericson, M., & Moore, T. (2005). Muscular balance, core stability, and injury prevention for middle-and long-distance runners. Physical Medicine and Rehabilitation Clinics of North America, 16(3), 669-689.
Gillespie, T. D. (1992). Fundamentals of vehicle dynamics: SAE Technical Paper.
Griffin, M. J. (2012). Handbook of human vibration: Academic press.
Haff, G. G., & Triplett, N. T. (2015). Essentials of Strength Training and Conditioning 4th Edition: Human kinetics.
Hibbs, A. E., Thompson, K. G., French, D., Wrigley, A., & Spears, I. (2008). Optimizing performance by improving core stability and core strength. Sports Medicine, 38(12), 995-1008.
Hickson, R., Rosenkoetter, M., & Brown, M. (1979). Strength training effects on aerobic power and short-term endurance. Medicine and Science in Sports and Exercise, 12(5), 336-339.
Jeukendrup, A., & Diemen, A. V. (1998). Heart rate monitoring during training and competition in cyclists. Journal of Sports Sciences, 16(sup1), 91-99.
Jeukendrup, A. E., & Martin, J. (2001). Improving cycling performance. Sports Medicine, 31(7), 559-569.
Juker, D., McGill, S., Kropf, P., & Steffen, T. (1998). Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Medicine and Science in Sports and Exercise, 30(2), 301-310.
Kibler, W. B., Press, J., & Sciascia, A. (2006). The role of core stability in athletic function. Sports Medicine, 36(3), 189-198.
Leetun, D. T., Ireland, M. L., Willson, J. D., Ballantyne, B. T., & Davis, I. M. (2004). Core stability measures as risk factors for lower extremity injury in athletes. Medicine & Science in Sports & Exercise, 36(6), 926-934.
Levy, M., & Smith, G. A. (2005). Effectiveness of vibration damping with bicycle suspension systems. Sports Engineering, 8(2), 99-106.
Macdermid, P. W., Fink, P. W., & Stannard, S. R. (2014). Transference of 3D accelerations during cross country mountain biking. Journal of Biomechanics, 47(8), 1829-1837.
Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics, 35(4), 537-542.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2006). Essentials of Exercise Physiology: Lippincott Williams & Wilkins.
Mester, J., Spitzenfeil, P., Schwarzer, J., & Seifriz, F. (1999). Biological reaction to vibration-implications for sport. Journal of Science and Medicine in Sport, 2(3), 211-226.
Nardone, A., Tarantola, J., Giordano, A., & Schieppati, M. (1997). Fatigue effects on body balance. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(4), 309-320.
Necking, L., Dahlin, L., Friden, J., Lundborg, G., Lundström, R., & Thornell, L. (1992). Vibration-induced muscle injury an experimental model and preliminary findings. Journal of Hand Surgery (British and European Volume), 17(3), 270-274.
Olieman, M., Marin-Perianu, R., & Marin-Perianu, M. (2012). Measurement of dynamic comfort in cycling using wireless acceleration sensors. Procedia Engineering, (34), 568-573.
Paton, C. D., & Hopkins, W. G. (2001). Tests of cycling performance. Sports Medicine, 31(7), 489-496.
Putnam, C. A. (1993). Sequential motions of body segments in striking and throwing skills: descriptions and explanations. Journal of Biomechanics, 26(1), 125-135.
Ricard, M. D., Hills-Meyer, P., Miller, M. G., & Michael, T. J. (2006). The effects of bicycle frame geometry on muscle activation and power during a Wingate anaerobic test. Journal of Sports Science & Medicine, 5(1), 25.
Samuelson, B., Jorfeldt, L., & Ahlborg, B. (1989). Influence of vibration on endurance of maximal isometric contraction. Clinical Physiology, 9(1), 21-26.
Saris, W., & Binkhorst, R. (1977). The use of pedometer and actometer in studying daily physical activity in man. Part II: validity of pedometer and actometer measuring the daily physical activity. European Journal of Applied Physiology and Occupational Physiology, 37(3), 229-235.
Sato, K., & Mokha, M. (2009). Does core strength training influence running kinetics, lower-extremity stability, and 5000-M performance in runners? The Journal of Strength & Conditioning Research, 23(1), 133-140.
Sharp, R. S. (2008). On the stability and control of the bicycle. Applied Mechanics Reviews, 61(6), 060803.
Tanaka, H., & Seals, D. R. (2008). Endurance exercise performance in Masters athletes: age‐associated changes and underlying physiological mechanisms. The Journal of Physiology, 586(1), 55-63.
van den Bogert, A. J., Read, L., & Nigg, B. M. (1996). A method for inverse dynamic analysis using accelerometry. Journal of Biomechanics, 29(7), 949-954.
Walter, P. L. (1997). The history of the accelerometer. Sound and vibration, 31(3), 16-23.
Weiss, B. D. (1985). Nontraumatic injuries in amateur long distance bicyclists. The American Journal of Sports Medicine, 13(3), 187-192.
Welbergen, E. y., & Clijsen, L. (1990). The influence of body position on maximal performance in cycling. European Journal of Applied Physiology and Occupational Physiology, 61(1-2), 138-142.
Wilber, C., Holland, G., Madison, R., & Loy, S. (1995). An epidemiological analysis of overuse injuries among recreational cyclists. International Journal of Sports Medicine, 16(3), 201-206.
Willson, J. D., Dougherty, C. P., Ireland, M. L., & Davis, I. M. (2005). Core stability and its relationship to lower extremity function and injury. Journal of the American Academy of Orthopaedic Surgeons, 13(5), 316-325.
Zattara, M., & Bouisset, S. (1988). Posturo-kinetic organisation during the early phase of voluntary upper limb movement. 1. Normal subjects. Journal of Neurology, Neurosurgery & Psychiatry, 51(7), 956-965.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw