進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201418422500
論文名稱(中文) 應用於電池模組之直流轉換器損耗分析與優化設計
論文名稱(英文) Loss Analysis and Optimized Design of DC-DC Converter for Battery Module
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 蔡孟原
研究生(英文) Meng-Yuan Tsai
學號 N26011209
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-梁從主
口試委員-賴炎生
口試委員-吳財福
口試委員-邱煌仁
口試委員-楊宏澤
中文關鍵字 電池模組  直流轉換器  數值分析  損耗分析  電池機率曲線 
英文關鍵字 battery module  DC-DC converter  numerical analysis  loss analysis  battery probability curve 
學科別分類
中文摘要 本論文針對應用於電池模組之直流轉換器進行損耗分析與優化設計的研究。首先以電感損失實驗的數據及元件規格書為基礎,並利用數值分析簡化分析方式,以求得雙向之降壓轉換器、升壓轉換器及升降壓轉換器之電感、開關、電容之損失與價格的方程式。接著量測磷酸鐵鋰電池的放電曲線及充電曲線,進而得到電池電壓的機率分佈,再將轉換器在各個電池操作電壓下的效率與電池各個操作電壓的機率相乘,得到轉換器在一個充/放電週期的效率。本論文設計匯流排電壓48 V、負載功率為200 W,60顆3.3V/ 1Ah之磷酸鐵鋰電池,依據本文所提之分析方法,探討雙向之降壓轉換器、升壓轉換器及升降壓轉換器應用於不同電池串並之電池模組的特性與價格。
英文摘要 This thesis focuses on the loss analysis and optimized design of DC-DC converter for battery module. By using the data measured from the experiment study of inductor loss and component datasheets to derive the inductor, MOSFET, and capacitor loss equations of bidirectional buck converter, boost converter, and buck-boost converter through numerical analysis. In addition, the charging and discharging characteristics of the lithium-ion phosphate (LiFePO4) battery are used to get the one cycle charging and discharging efficiency. Finally, the characteristics and cost of battery module in different battery series/parallel conditions with bidirectional buck converter, boost converter, and buck-boost converter are analyzed by the proposed method. There are 60 LiFePO4 batteries cell (3.3 V/1.0 Ah) used as the battery bank, the bus voltage is 48 V, and maximum output power is 200 W.
論文目次 中文摘要 I
英文摘要 II
誌謝 VII
目錄 VIII
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文大綱 5
第二章 電池模組特性簡介 6
2.1 二次電池特性介紹 6
2.2電池與電池模組串並聯介紹 8
2.2.1電池串並聯 8
2.2.2電池模組串並聯 9
2.3電池模組特性介紹 11
2.4電池模組設計考量 12
第三章 電池模組分析與設計 14
3.1研究條件及參數定義 14
3.2各架構應力分析 17
3.3 電感損失分析 23
3.3.1 電感分析概述 23
3.3.2 銅損分析 26
3.3.3 鐵損分析 28
3.3.4 鐵芯價格分析 34
3.3.5 電感設計方法 35
3.4 開關損耗分析 38
3.4.1 導通損分析 38
3.4.2 切換損分析 39
3.4.3 功率開關設計方法 43
3.5 電容損耗分析 45
3.5.1 電容等效串聯電阻損失分析 45
3.5.2 電容設計方法 47
3.6轉換器總損耗分析 48
3.7 轉換器優化設計 49
3.7.1電池充放電機率分析 49
3.7.2 電池串聯數優化設計 52
第四章 參數設計與模擬結果分析 53
4.1前言 53
4.2電池串數設計 54
4.2.1 電路參數設計 54
4.2.2 電感損耗分析 55
4.2.3 功率開關損耗分析 57
4.2.4 電容損耗分析 58
4.2.5 轉換器總損耗分析 59
4.2.6電池串數設計結果 60
4.5 實作驗證 62
第五章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 64
參考文獻 65
附錄A 分析之各元件資料 70
A.1電感資料 70
A.2功率開關資料 70
A.3電容資料 73
附錄B 數值分析方法 79
參考文獻 [1] German Advisory Council on Global Change, "World in Transition 3:Towards Sustainable Energy Systems," Routledge, 2014.
[2] Energy Information Administration, "April 2014 Monthly Energy Review", 2014.
[3] http://www.taipower.com.tw
[4] P. T. Krein, and R. S. Balog, "Life extension through charge equalization of lead-acid batteries," Telecommunications Energy Conference, pp. 516-523, 2002.
[5] H. Schmidt, and C. Siedle, "The charge equalizer-a new system to extend battery lifetime in photovoltaic systems, UPS and electric vehicles," Telecommunications Energy Conference, vol. 2, pp. 146-151, 1993.
[6] S. West, and P. T. Krein, "Equalization of valve-regulated lead-acid batteries: issues and life test results," Telecommunications Energy Conference, pp. 439-446, 2000.
[7] J. Cao, N. Schofield, and A. Emadi, "Battery balancing methods: A comprehensive review," Vehicle Power and Propulsion Conference, pp. 1-6, 2008.
[8] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge equalization for an electric vehicle battery system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 235-246, 1998.
[9] S. W. Moore, and P. J. Schneider, “A review of cell equalization methods for lithium ion and lithium polymer battery systems,” SAE Publication, pp. 1-959, 2001.
[10] C. H. Hou, C. T. Yen, T. H. Wu, and C. S. Moo, "A battery power bank of serial battery power modules with buck-boost converters," 2013 IEEE 10th International Conference on Power Electronics and Drive Systems, pp. 211-216, 2013.
[11] C. S. Moo, J. Y. Jian, T. H. Wu, L. R. Yu, and C. C. Hua, "Battery power system with arrayed battery power modules," 2013 International Conference on Science and Engineering, pp. 437-441, 2013.
[12] L. R. Yu, Y. C. Hsieh, W. C. Liu, and C. S. Moo, "Balanced discharging for serial battery power modules with boost converters," 2013 International Conference on System Science and Engineering, pp. 449-453, 2013.
[13] N. Mohan, and T. M. Undeland, "Power electronics: converters, applications, and design, " John Wiley & Sons, 2007.
[14] M. H. Rashid, "Power Electronics Handbook: Devices, Circuits and Applications,"Academic Press, 2010.
[15] 梁適安,「交換式電源供給器之理論與實務設計:修訂版」,全華圖書,2008。
[16] http://batteryuniversity.com/
[17] Panasonic CGR18650CG datasheet
[18] http://www.power-sonic.com/
[19] T. Dong, J. Li, F. Zhao, Y. You, and Q. Jin, "Analysis on the influence of measurement error on state of charge estimation of LiFePO4 power Battery," 2011 International Conference on Materials for Renewable Energy & Environment, vol 1, pp. 644-649, 2011.
[20] S. J. Lee, J. H. Kim, J. M. Lee, and B. H. Cho, "The State and Parameter Estimation of an Li-Ion Battery Using a New OCV-SOC Concept," Power Electronics Specialists Conference, pp. 2799-2803, 2007.
[21] C. S. Moo, K. S. Ng, Y. P. Chen, and Y. C. Hsieh, "State-of-Charge Estimation with Open-Circuit-Voltage for Lead-Acid Batteries," Power Conversion Conference, pp. 758-762, 2007.
[22] G. Wu, R. Lu, C. Zhu, and C. C. Chan, "State of charge Estimation for NiMH Battery based on electromotive force method," Vehicle Power and Propulsion Conference, pp. 1-5, 2008.
[23] 何嘉偉,「具冗餘及熱插拔功能之多模組換流器並聯系統研製」,國立中山大學電機系碩士論文,2004。
[24] C. W. T. McLyman, "Transformer and inductor design handbook," CRC press, 2004.
[25] W. Roshen, “Ferrite core loss for power magnetic components design,” IEEE Transactions on Magnetics, vol. 27, no. 6, pp. 4407-4415, 1991.
[26] Q. Li, M. Mu, and F. C. Lee, "Analytical core loss models for planar inductors with non-uniform flux distribution and non-sinusoidal excitation," Applied Power Electronics Conference, pp. 1783-1789, 2012.
[27] J. Liu, T. Wilson, R. C. Wong, R. Wunderlich, and F. C. Lee, "A method for inductor core loss estimation in power factor correction applications," Applied Power Electronics Conference, pp. 439-445, 2002.
[28] J. Mühlethaler, J. Biela, J. W. Kolar, and A. Ecklebe, “Improved core-loss calculation for magnetic components employed in power electronic systems,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 964, 2012.
[29] A. Van den Bossche, V. C. Valchev, and G. B. Georgiev, "Measurement and loss model of ferrites with non-sinusoidal waveforms," Power Electronics Specialists Conference, vol. 6, pp. 4814-4818, 2004.
[30] V. Barkhordarian, "Power MOSFET Basics, International Rectifier," IEEE Electron Device Letters, 1990.
[31] J. Brown, “Power MOSFET Basics: Understanding Gate Charge and Using It To Assess Switching Performance,” Vishay Siliconix, AN608, 2004.
[32] D. A. Grant, and J. Gowar, "Power MOSFETs: theory and applications," Wiley New York etc, 1989.
[33] J. Klein, “Synchronous buck MOSFET loss calculations with Excel model,” Fairchild Semiconductor Application Notes AN-6005, vol. 48, 2006.
[34] B. Razavi, R.-H. Yan, and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Transactions on Circuits and Systems, vol. 41, no. 11, pp. 750-754, 1994.
[35] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, “Analytical loss model of power MOSFET,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 310-319, 2006.
[36] S. Pam, R. Sheehan, and S. Mukhopadhyay, "Accurate loss model for DC-DC buck converter including non-linear driver output characteristics," Applied Power Electronics Conference, pp. 721-726, 2012.
[37] M. Rodriguez, A. Rodriguez, P. F. Miaja, and J. Sebastian, "A complete analytical switching loss model for power MOSFETs in low voltage converters," European Conference on Power Electronics and Applications, pp. 1-10, 2009.
[38] D. J. Shortt, "The Effect of Capacitor Equivalent Series Inductance on DC-DC Converter Performance and Stability," Applied Power Electronics Conference, pp. 136-142, 1989.
[39] J. Wang, B. Bao, J. Xu, G. Zhou, and W. Hu, “Dynamical effects of equivalent series resistance of output capacitor in constant on-time controlled buck converter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 1759-1768, 2013.
[40] X. Zhou, T. G. Wang, and F. C. Lee, "Optimizing design for low voltage DC-DC converters," Applied Power Electronics Conference, vol. 2, pp. 612-616, 1997.
[41] http://www.newark.com/
[42] http://www.irf.com/
[43] http://www.digikey.com/
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw