進階搜尋


下載電子全文  
系統識別號 U0026-2708201416035600
論文名稱(中文) 電容式壓力感測器應用於尿流速量測與研製
論文名稱(英文) Implementation of Capacitive Pressure Sensor for Uroflowmetry Measurement
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 陳虹如
研究生(英文) Hong-Ru Chen
學號 n26010203
學位類別 碩士
語文別 中文
論文頁數 59頁
口試委員 指導教授-羅錦興
口試委員-許梅娟
口試委員-陳世中
中文關鍵字 電容式壓力感測器  文氏管  微機電製程技術 
英文關鍵字 Micro Electro Mechanical Systems (MEMS)  capacitive pressure sensor  uroflowmetry. 
學科別分類
中文摘要 在腎臟檢查的眾多項目中,尿液流量量測在很多項目都有包含,尿流量的多寡並不與疾病直接掛上等號,而是藉由尿流量來計算成份的含量或是其變化評估腎臟的健康狀況。
本文欲研製一針對尿流速為對象的流速感測器,以尿速與流道容積關係可推得尿流量,配合其它感測對象,如肌酐酸的量測,可得到肌酐酸在一定時間內的排泄量,此含量多寡可做為對腎臟功能的評估。期望感測器最後能裝在尿袋上,讓病人可以在家中自行檢驗而不需要跑醫院,讓病人可以在檢測環境中更覺得舒適。因此感測器的製作需要考慮到衛生、安全與感測器操作等的便利性。
電容式壓力感測器在量測原理上是量測因流速造成的壓力使感測薄膜形變而改變的電容值,並以文氏管做為感測器的架構,成為一新型構造的感測器。特點是感測電極與尿液隔離,不必擔心因操作不當而有漏電流產生,使用上安全性佳。在製作上選擇材料便宜、製程簡單因此成本低可達到用完即拋,增加使用的方便性,在衛生上的考量,也避免尿液的殘留而滋生細菌。
本文的感測器製作嘗試各種不同的製程做法,利用微機電製程技術,成功做出一套符合電容式壓力感測器的製程流程,並克服險峻表面(高低差達33 μm)難以圖案定義的困難。做出的感測器電容值在進行慢流速注水測試後電容改變量達到36 pF,對於液體流動具有靈敏度,但對於流速的分辨上仍有很大的改進空間。
英文摘要 Since kidney disease usually has no symptoms until it is at a serious stage; therefore, uroflow test would be a basic indication for various kinds of kidney checkup. Although the amount of uroflow test is not equally to kidney diseases, it is an indication for us to evaluate kidney health status by measuring either the content or the flow rate of urine.
This study makes efforts to manufacture urinary flow meter to measure uroflowmetry on urine collection bags. The uroflow is calculated by using the relation between urine flow rate and the flow channel diameter. And the test is completed on urine collection bags. Combining with other medical test for kidney, this is a disease test to evaluate kidney function.
Our objective is to make this uroflow test compact and comfortable; meaning that patients could apply test by themselves at home rather than in hospital. Capacitive pressure sensor measures film strain, which is related with the flow rates and converted to capacitance changing. In this study, urine flow meter is based on Venturi tube as the sensor structure. Venturi tube sensor structure is featuring to separate urine from sensors to avoid accidentally current leakage. For hygiene aspect, PDMS is a kind of low cost disposable material. Micro Electro Mechanical Systems (MEMS) technology is applied for compact consideration.
The capacitive area is 6 mm x 2 mm and the size of square via array in the sensing area is 100 μm x 100 μm. The width of the channel connecting two capacitors’ spaces is 50 μm. Negative PR is adopted and coated on a steep surface with 33 μm gap difference. The flow meter could determine whether liquid flow passing through or not, but it has low resolution at low flow rate.
論文目次 摘要 I
Abstract II
誌謝 XII
表目錄 XV
圖目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 腎臟與尿液 1
1.2.2 流量計的分類與應用 4
1.2.3 流體力學簡介 7
1.3 研究動機與目的 9
第二章 研究方法 10
2.1 感測器設計 10
2.1.1 單電容感測器 11
2.1.2 大尺寸雙電容感測器 15
2.1.3 MEMS製小尺寸雙電容感測器 20
2.2 量測儀器與環境 30
2.2.1 阻抗量測儀 30
2.2.2 注射幫浦 31
2.2.3 量測系統 32
第三章 結果與討論 33
3.1 單電容感測器 33
3.1.1 製作結果 33
3.1.2 量測結果與分析 33
3.1.3 量測結果探討 34
3.2 大尺寸雙電容感測器 34
3.2.1 製作結果 34
3.2.2 量測結果與分析 38
3.2.3 量測結果探討 38
3.3 MEMS製小尺寸雙電容感測器 39
3.3.1 製作結果 39
3.3.2 量測結果與分析 47
3.3.3 量測結果探討 50
3.4 製程上的實務經驗與探討 52
3.4.1 旋轉塗佈 52
3.4.2 曝光與顯影 53
3.4.3 硬烤 53
3.4.4 金屬電極鍍膜 53
3.4.5 黃光製程探討-險峻表面定義圖案 54
第四章 結論與未來展望 57
4.1 結論 57
4.2 未來展望 57
參考文獻 58
參考文獻 [1] E. Imai and S. Matsuo, “Chronic kidney disease in Asia,” The Lancet, 371(9631):2147-2148, 2008
[2] 戚啟禮,「尿液常規檢查」,新竹市脊髓損傷者協會,available: http://web.it.nctu.edu.tw/~hcsci/indexh.htm
[3] 腎臟科,「腎臟的基本構造與功能」,臺北榮民總醫院腎臟科,100,available: http://homepage.vghtpe.gov.tw/~neph/contents/7-1-1.htm
[4] 葉力嘉,「腎功能的檢查」,新光醫院病理檢驗科,available: http://www.skh.org.tw/blood/test7.html
[5] R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, A. van den Berg and M. C. Elwenspoek, “Designing, realization and characterization of a novel capacitive pressure / flow sensor,” Transducers, International Conference on Solid State Sensors and Actuators, Chicago, 151-154, 1997
[6] R. E. Oosterbroek, T. S. J. Lammerink, J. W. Berenschot, G. J. M. Krijnen, M. C. Elwenspoek, A. van den Berg, “A micromachined pressure/flow-sensor,” Sensors and Actuators, 77(3):167-177, 1999
[7] J. Sun, D. Cui, L. Zhang, X. Chen, H. Li, “A Micromachined Gas Flow Sensor With Polydimethylsiloxane Flow Channels,” Journal of microelectromechanical systems, 22(3):723-729, 2013
[8] S. Shoji and M. Esashi, “Microflow devices and systems,” Journal of Micromechanics and Microengineering, 4(4):157-171, 1994
[9] 陳建人,「微機電系統技術與應用」,行政院國家科學委員會精密儀器發展中心,2003。
[10] W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Materials and Structures, 6(5):530-539, 1997
[11] N. T. Nguyen, “Micromachined flow sensors-a review,” Flow Measurement and Instrumentation, 8(1):7–16, 1997
[12] L. V. King, “On the Convention of Heat from Small Cylinders in a Stream of Fluid: Determination of the Convection Constants of Small Platinum Wires with Application to Hot Wire Anemomrtry,” Proc. Roy. London A, 90, 563, 1914
[13] S. M. Lee, D.C. Dyer, and J. W. Gardner, “Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors,” Microelectronics Journal, 34(2):115-126, 2003
[14] N. Xue and W. P. Yan, ”A silicon-glass-based microfabricated wide range thermal distribution gas flow meter,” Sensors and Actuators A: Physical, 173(1):145-151, 2012
[15] M. Asadnia, A. G. P. Kottapalli, Z. Shen, J. Miao and M. Triantafyllou, “Flexible and surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles,” Sensors Journal, IEEE, 13(10):3918-3925, 2013
[16] C. G. Hindrichsen, R. Lou-Møller, K. Hansen and E.V. Thomsen, ”Advantages of PZT thick film for MEMS sensors,” Sensors and Actuators A: Physical, 163(1):9-14, 2010
[17] O. M. Fein, “A model for piezo-resistive damping of two-dimensional structures,” Journal of Sound and Vibration, 310(4-5):865-880, 2008
[18] Y. Chen, P. Xu, M. Liu and X. Li, “Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors,” Microelectronic Engineering, 87(12):2468-2474, 2010
[19] X. Li, Y. Zohar and M. Wong, “Fabrication and characterization of nickel-induced laterally crystallized polycrystalline silicon piezo-resistive sensors,” Sensors and Actuators A: Physical, 82(1-3):281-285, 2000
[20] M. Ferrari, V. Ferrari, D. Marioli, A. Taroni, M. Suman and E. Dalcanale, “Cavitand-coated PZT resonant piezo-layer sensors: properties, structure, and comparison with QCM sensors at different temperatures under exposure to organic vapors,” Sensors and Actuators B: Chemical, 103(1-2):240-246, 2004
[21] A. G. P. Kottapalli, C. W. Tan, J. Miao, G. Barbastathis and M. Triantafyllou, ” Design and Characterization of Liquid Crystal Polymer Membrane MEMS Sensors for Underwater Sensing Applications: A Biomimetic of Lateral-Line Fish Sensing,” Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, 1194-1199, 2011
[22] X. M. Jing, J. M. Miao, T. Xu, M. Olfatnia and L. Norford, “Vibration characteristics of micromachined piezoelectric diaphragms with a standing beam subjected to airflow,” Sensors and Actuators A: Physical, 164(1-2):22-27, 2010
[23] S. Pandya1, Y. Yang1, D. L. Jones, J. Engel1 and C. Liu, “Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors,” EURASIP Journal on Applied Signal Processing, 2006:1-6
[24] L. Yaxin, C. Liguo and S. Lining, ”A MEMS Flow Sensor and Its Application in Adaptive Liquid Dispensing,” Measuring Technology and Mechatronics Automation, 2009. ICMTMA '09. International Conference on, 1:3-7, 2009
[25] S. T Cho and K. D Wise, “A high-performance microflowmeter with built-in self test,” Sensors and Actuators A: Physical, 36(1): 47-56, 1993
[26] Z. Sun, H. Zhang and J. Zhou, ”Investigation of the pressure probe properties as the sensor in the vortex flowmeter,” Sensors and Actuators A: Physical, 136(2):646-655, 2007
[27] A. Venugopal, A. Agrawal and S. V. Prabhu, “Frequency detection in vortex flowmeter for low Reynolds number using piezoelectric sensor and installation effects,” Sensors and Actuators A: Physical, 184:78-85, 2012
[28] 吳文政,「轉動、彈性學及流體力學」,建宏出版社,台北,160-167,1998。
[29] 陳育堂、許欽淳、康尚文,「微文氏管流場之研究」,德霖學報,25,2011。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw