進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201415032900
論文名稱(中文) 商用石墨及碳/碳複合材料之表面處理方法及其性質研究
論文名稱(英文) Study on properties of surface treatment method on commercial graphite and carbon/carbon composite
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 方琮文
研究生(英文) Tsung-Wen Fang
學號 N56011289
學位類別 碩士
語文別 中文
論文頁數 165頁
口試委員 指導教授-朱建平
指導教授-陳瑾惠
共同指導教授-李國榮
中文關鍵字 石墨  碳/碳複合材料  表面處理  靜態腐蝕  太陽能硝酸鹽 
英文關鍵字 graphite  carbon/carbon composite  surface treatment  corrosion  solar salt 
學科別分類
中文摘要 本研究以石墨紙做為密封層,在預浸過程中分別使用酚醛樹脂做為含浸液,分別在商用石墨及商用碳/碳複合材料表面,進行單面、雙面之披覆製程,同時探討材料與石墨紙結合的程度,及其對材料密度、孔隙率、機械性質及顯微結構的影響,並進一步觀察密封層在硝酸鹽類中靜態腐蝕前後的變化。
實驗結果顯示,含浸液濃度與試片厚度與石墨紙披覆性有關,經表面處理後的密度與孔隙率皆下降了,而經雙面表面處理之試片性質比單面表面處理要來的好,且經過靜態腐蝕試驗後,密封層與商用石墨、商用碳/碳複合材料表面依然擁有接合性。
綜合實驗結果發現,經過硝酸鹽類環境中的腐蝕試驗後,其密封性依然不受影響,抗腐蝕亦非常優良,極具應用於聚光熱太陽能發電熱交換器與儲熱槽的潛力。
英文摘要 This study is investigate to the density, porosity, and mechanical properties of the commercial graphite and carbon/carbon composite, using the phenolic resin as a precursor of carbon during the prepreg fabricated. In the final, the specimen will tested by corrosion in solar salt and observed the sealing layer changes before and after the corrosion test. The results indicate that have excellent performance to improve density, reduce porosity and increase the mechanical properties with surface treatment in various densified stages compared with surface treatment at thermoforming stage. And the specimen which coated sealing layer on surface has bond ability after corrosion test. Consequently, the commercial graphite and carbon/carbon composite with surface treatment can raise the performance of properties, and the hermetic properties still unaffected after the corrosion test in solar salt.
論文目次 中文摘要 I
英文摘要 II
致謝 V
總目錄 VII
表目錄 XII
圖目錄 XIV
第一章 前言 1
第二章 文獻回顧 4
2.1 石墨 4
2.1.1 石墨之分類 4
2.1.1.1 天然石墨 4
2.1.1.2 工業級石墨 5
2.1.1.3 核能級石墨 5
2.1.2 石墨之性質 6
2.1.3 石墨之應用 7
2.2 碳/碳複合材料 8
2.2.1 碳/碳複合材料之發展 8
2.2.2 碳/碳複合材料之製程 9
2.2.2.1 含浸液-酚醛樹脂(Phenolic Resin) 10
2.2.2.2 表面處理材料-石墨紙(Graphite Foil) 11
2.2.2.3 穩定化(Post-curing) 12
2.2.2.4 碳化(Carbonization) 14
2.2.3 碳/碳複合材料之性質 15
2.2.3.1 碳/碳複合材料之熱物理性質 16
2.2.3.2 碳/碳複合材料之相關機械性質 17
2.2.4 碳/碳複合材料之應用 19
2.2.4.1 碳/碳複合材料在航太工業之應用 19
2.2.4.2 碳/碳複合材料在運輸工具煞車之應用 19
2.2.4.3 碳/碳複合材料在高溫熱壓模具與高溫爐之應用 20
2.2.4.4 碳/碳複合材料在生醫材料之應用 20
2.2.4.5 碳/碳複合材料在核能材料之應用 21
2.2.4.6 碳/碳複合材料在太陽能發電之應用 21
2.3 聚光太陽能熱發電與相變化材料的選擇 22
2.3.1 聚光太陽能熱發電之發展 22
2.3.2 聚光太陽能熱發電分類與原理 24
2.3.3 相變化材料的選用 25
2.3.4 Solar Salt性質簡介 27
2.3.5 Solar Salt的腐蝕性 27
第三章 實驗方法 43
3.1 實驗材料 43
3.1.1 液態酚醛樹脂 43
3.1.2 高密度石墨 43
3.1.3 碳/碳複合材料 43
3.1.4 石墨紙密封層 43
3.1.5 高溫靜態腐蝕原料 44
3.2 試片製備 44
3.2.1 真空含浸 44
3.2.2 真空熱壓披覆 45
3.2.3 穩定化 45
3.2.4 慢速碳化 46
3.2.5 試片裁切 46
3.3 性質量測及分析 47
3.3.1 體密度及孔隙率量測 47
3.3.2 厚度量測 48
3.3.3 抗彎試驗 49
3.3.4 石墨紙結合強度測試 49
3.3.5 靜態硝酸鹽腐蝕測試 50
3.3.5.1 熔鹽Solar salt的純化(purification) 50
3.3.5.2 熔鹽Solar salt靜態腐蝕 51
3.3.6 掃描式電子顯微鏡(SEM)觀察 51
第四章 結果與討論 67
4.1 含浸液濃度對單面表面處理披覆性之影響 67
4.2 石墨厚度對雙面表面處理披覆性之影響 68
4.3 試片密度性質之探討 68
4.3.1 表面處理對商用石墨密度之影響 68
4.3.2 表面處理對商用碳/碳複合材料密度之影響 70
4.3.3 試片密度性質之綜合比較 71
4.4 試片孔隙率性質之探討 71
4.4.1 表面處理對商用石墨試片孔隙率性質之影響 71
4.4.2 表面處理對商用碳/碳複合材料孔隙率性質之影響 73
4.4.3 試片孔隙率性質之綜合比較 74
4.5 碳/碳複合材料抗彎試驗強度值之探討 74
4.5.1 表面處理對商用石墨抗彎強度值之影響 74
4.5.2 表面處理對商用碳/碳複合材料抗彎強度值之影響 75
4.5.3 碳/碳複合材料抗彎強度值之綜合比較 76
4.6 石墨紙與基材結合強度值之探討 76
4.7 試片顯微結構之探討 77
4.7.1 四點抗彎破斷面之顯微結構 77
4.7.2 靜態腐蝕試驗 78
4.7.2.1 腐蝕前顯微結構 78
4.7.2.2 腐蝕後顯微結構 78
第五章 結論 153
第六章 參考文獻 154
參考文獻 Bernardet V. and Gomes S.,et al.,“Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit”,Journal of Nuclear Materials,pp.292-302,2009.

Bhatnagar V.,Deffrennes M.,Hugon M.,Manolatos P.,Ptackova K.,Van Goethem G.,Webster S.,“FISA-2009 Conference on Euratom Research and Training Activities: Nuclear Fission-Past,Present and Future(Generation-II,-III and –IV+Partitioning and Transmutation)”,Nuclear Engineering and Design,Vol.241,pp.3376-3388,2011.

Briggs R. B.,“Molten Salt Reactor Program Semiannual Progress Report for Period Ending”,ORNL-3282,Oak Ridge National Laboratory,Oak Ridge,TN,1962.

Bruckmann H. and Huttinger K.J.,“Carbon,a Proomising material in Endoprosthetics,Part I”,Biomaterials,Vol.1,pp.67-72,1980.

Buckley J.D. and Edie D.D.,in “Carbon-Carbon Materials and Composites”,Noyes,New Jersey,pp.1-281,1993.

Chawla K.K.,in “Composite Materials Science and Engineering”,Springer-Verlag,New York,pp.6-228,1987.

Chen L.H.,“Deformation,Transfer and Debris for Mation During Sliding Wear of Metals”,Scripta Metallurgica et Materialia,Vol.24,pp.827-832,1990.

Clark W.T.,and Lancaster J.K.,“Breakdown and Sliding”,Wear,Vol.6,pp.467-482,1963.

David J. Diamond,Generation IV Nuclear Energy System: How They Got Here And Where They Are Going,Brookhaven Nation Laboratory,(2003).

D.D. SOOD,Molten Salt Reactor Concept,Board of Research in Nuclear Science,Bombay(1980).

Dhami T.L.,Bahl O.P.,et al.,“Carbon-Carbon Composites Made With Oxidized Pan(Panex) Fibers”,Carbon,Vol.33,No.11,pp.1517-1524,1995.

Dresher W.H.,“The Age of Fibers”,Journal of Metals,Vol.21,No.4,pp.17-26,1969.

Fan-Yi Ouyang,et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments. Journal of Nuclear Materials,2013,437(1-3): 201-207.

Fernandez J J,Figueiras A,Granda M,et al. Modification of Coal-tar Pitch by Air-blowing C-I. Variation of Pitch Composition and propertiy. Cabon,1995,33(3): 295-309.

Fisher R.,“Carbon-Carbon Brakes for Aircraft” in “Composite Materials in Aircraft Structures”,D.H.Middleton ed.,John Wiley & Sons,New York,pp.336-340,1990.

Fitzer E. and Monocha L.M.,“Carbon reinforcement and Carbon/Carbon composites”,Springer,Berlin,1998.

Fitzer E.,“The Future of Carbon-Carbon composites”,Carbon,Vol.25,pp.163-190,1987.

Franklin R.E.,“The structure of graphitic carbons” Acta crystallographica,Vol.4,pp.253-261,1951.

George Lubin,“Handbook of composites Seven edition”,Chapman&Hall,London,(1982).

Greg Kolb,"Concentrating Solar Power: The 'Other' Solar A Systems Perspective",Sandia National Laboratories, Nov., 2004.

Grimes W. R. et al.,“Chemical Aspects of Molten Fluoride Salt Reactor Fuels in Fluid-Fueled Reactors”,ed. J. A. Lane et al.,Addison-Wesley,NY,Chap.12,1958.

Hsu S.E. and Chen C.I.,“The Processing and Properties of Some C/C Systems” in “Superalloys,Supercomposites and superceramics”,J.K.Tien and T.Caulfield eds.,Academic Press,San Diego,CA,USA,pp.721-744,1989.

Hüttinger K J,Bruckmann H. Forschungsbemcin BMFT-FBT,1981,81: 1.

Hutton T. J.,McEnaney B. and Crelling J.C.,“Structural studies of wear debris from carbon-carbon composite aircraft brakes”,Carbon,Vol.37,No.6,pp.907-916,1999.

International Energy Agency,"Technology Roadmap Concentrating Solar Power",©OECD/IEA, 2010.

Jens S.,and Matthias S.,et al.,“Design,Fabrication,and Testing of Ceramic Plate-Type Heat Exchangers with Integrated Flow Channel Design”,Int. J. Appl. Ceram. Technol,Germany,2010.

Jetal K et al. Kinetics of mesophase formation in a stirred tank reactor and properties of the products-III continuous reactor. Carbon,1992,30(1): 9-15.

Jetal K Kinetics of mesophase formation in a stirred tank reactor and properties of the products. Carbon,1991,29(3): 439-448.

Jetal K. Kinetics of mesophase formation in a stirred tank reactor and properties of the products-II discontinuous reactor. Carbon,1992,30(1): 1-8.

John D.B. and Dan D.E.,“Carbon-Carbon Materials and Composites”,Noyes Pulications,USA,pp.200-201,1993.

Kanno K,Femandea J J,Fortin F,et al. Modification of mesophase pitch by addition of carbon black. Carbon,1997,35(10-11): 1627.


Kearney D.,Kelly B.,et al., Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field ﹝J﹞. Solar Energy Engineering,125: 170-176,2003

Kimura S.,Yasuda E. and Narita N.,“Friction and Wear of Carbon/Carbon Composite”,Journal of Japanese Society of Lubrication Engineers,Vol.28,No.3,pp.185-191,1983.

Ko T.H. and Ma T.S.,“Effect of post-curing on the mechanical properties of carbonized phenolic resins”,Polymer Composites,Vol.19,No.4,pp.456-462,1998.

Kondo M.,Nagasaka T.,Tsisar V.,Sagara A.,Muroga T.,Watanabe T.,Oshima T.,Yokoyama Y.,Miyamoto H.,Nakamura E.,Fuji N. “Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions”,Fusion Engineering and Design,Vol.85,pp.1430-1436,2010.

Laušević Z.,Marinković S.,“Mechanical properties and chemistry of carbonization of phenol formaldehyde resin”,Carbon,Vol.24,No.5,pp.575-580,1986.

Liedtke V,et al. Mesophase pitch as matrix precursor of carbon fiber reinforced carbon: II. stabilization of mesophase pitch matrix by oxygen treatment. Carbon,1996,34(9): 1067.

Martino Bosatra,Federico Fazi,Pier Franco Lionetto et al., "Utility Scale PV and CSP Solar Power Plants Performance,Impact on the Territory and Interaction with the Grid", Presented at Power-Gen Europe,2010

Menendez R,Fernandea J J,Bermejo J,et al. The role of carbon black/ coal-tar pitch interactions in the early stage of carbonization. Carbon,1996,34(7): 895.

Michael C.Y.,“Composite airframe structure”,pp.62-65,1992.

Min Liu,et al. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques. Journal of Nuclear Materials,2013,440(1-3): 124-128.

Mochida I,Shimizu K,Korai Y,et al. Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BFS. Carbon,1990,28(2-3): 311-319.

Moore D.F.,in “Principles and Application of Tribology”,Pergamon,Oxford,pp.1-388,1975.

Murty K.L.,Charit I.,“Structural materials for Gen-IV nuclear reactors: Challenges and opportunities”,Journal of Nuclear Materials,Vol.383,pp.189-195,2008.

Nazen F F. Flow of molten mesophase pitch. Carbon,1982,20(4): 345-354.

Oh S.M. and Lee J.Y.,“Effect of Matrix Structure on Mechanical Properties of Carbon/Carbon Composites”,Carbon,Vol.26,pp.769-776,1988.

Olson L.C.,Ambrosek J.W.,Sridharan K.,Anderson M.H.,Allen T.R. “Materials corrosion in molten LiF-NaF-KF salt”,Journal of Fluorine Chemistry,Vol.130,pp.67-73,2009.

Park J.B.,“Ceramic Implant Materials” in “Biomaterials Science and Engineering”,Plenum Press,New York,pp.235-263,1980.

P. D. Matzinos,J. W. Patrick and A. Walker,“Coal-tar pitch as a matrix precursor for 2-D C/C composites”,Carbon,Vol.34,pp. 693-644,1996.

Planta Solar de Almerı´a. Informe te´ cnico annual,2006.

Pierson H.O.,in “Handbook of Carbon,Graphite,Diamond and Fullerenes”,Noyes,New Jersey,pp.1-69,1993.

Rober,F.L.,Kandhal,P.S.,Brown,E.R.,Lee,D.Y.,and Kennedy,T.W.,Hot Mix Asphalt Materials,Mixture Design,and Construction,NAPA Education Foundation,Second Edition,Lanham,Maryland (1996).

Ruppe J.P.,“Today and the Future in AirCraft wheel and Brake Development”,Canadian Aeronautics and Space journal,Vol.26,No.3,pp.209-216,1980.

Savage G. Carbon-carbon composites. London: Chapman & Hall,1993: 99.

Shell Bitumen,The Shell Bitumen Industrial Handbook,Surrey,U.K. (1995).

Thoma R.E.,“Phase Diagrams of Nuclear Reactor Materials”,ORNL-2548,Oak Ridge National Laboratory,Oak Ridge,TN,1959.

Tim Abram,Sue Ion,“Generation-IV nuclear power: A review of the state of the science”,Energy Policy,Vol.36,pp.4323-4330,2008.

Tzeng S.S. and Pan H.H.,“Densification of two-dimensional carbon/carbon composites by pitch impregnation”,Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,Vol.316,No.1-2,pp.127-134,2001.

U. Herrmann, B. Kelly, and H. Price, Energy 29(5–6), 883 (2004).

Walter Krenkel,Ceramic Matrix Composites,Germany(2008).

Weeton J.W.,Peters D.M. and Thomas K.L.,“Introduction to Composite Materials” in “Engineers’ Guide to Composite Materials”,American Society for Metals,Ohio,Section 1,pp.1-16,1987.

White J L. Pitch-based processing of carbon-carbon composites. Carbon,1989,27(5): 697.

Wielage B.,Odeshi A.G.,et al.,“A cost effective route for the densification of carbon-carbon composites”,Journal of Materials Processing Technology,Vol.132,No.1-3,pp.313-322,2003.

Xiong X. and Huang B.Y. and Li J.H. and Xu H.J.,“Friction behaviors of Carbon/Carbon composites with different pyrolytic carbon textures”,Carbon,Vol.44,pp.463-467,2006.

Yamashita Y. and Ouchi K.,“A study on Carbonization of Phenol-Formaldehyde Resin Labeled with Deuterium and C-13”,Carbon,Vol.19,No.2,pp.89-94,1981.

Yen B.K. and Ishihara and Tadashi,“An investigation of friction and wear mechanisms of carbon-carbon composites in nitrogen and air at elevated temperatures”,Carbon,Vol.34,No.4,pp.489-498,1996.

Zimmer J E,Weitz R L. Magnetic field alignment of the matrix in a carbon-carbon composite. Carbon,1982,26(4): 579-588.

史景利,劉郎,查慶芳. 瀝青流變性質的研究方法. 碳素技術,1996(3): 18-23.

何宜儒,“碳材料在氟化鹽類中的靜態腐蝕與沖蝕研究”,國立成功大學材料科學及工程研究所碩士論文,2012.

辛昱霖,“以田口方法研究煤炭及焦炭-瀝青燒結之最佳條件”,大同大學,材料工程碩士論文,2010.

李軒科. 煤瀝青的流變性和碳化的研究. 碳素技術,1991(3): 11.

紀奕宏,“熱壓壓力及持溫時間對快速碳化製作碳/碳複合材料機械性質之影響”,國立成功大學材料科學及工程研究所碩士論文,2010.

高偉珉,“石墨化處理對碳/碳複合材料機械及磨潤性質之影響”,國立成功大學材料科學及工程研究所碩士論文,2007.

孫銘弘,“表面處理對碳/碳複合材料性質研究”,國立成功大學材料科學及工程研究所碩士論文,2011.

陳聰偉,“表面處理對碳/碳複合材料性質之影響”,國立成功大學材料科學及工程研究所碩士論文,2013.

許明發,郭文雄,“複合材料”,高立圖書有限公司,1988.

許明發,“碳、碳纖維、碳/碳複合材料之加工技術及應用”,滄海書局,1997.

郭華軒,“碳化速率對碳/碳複合材料機械及磨潤性質影響之研究”,國立成功大學材料科學及工程研究所博士論文,2004.

張福勒,“航空剎車用C/C複合材料石墨化度的研究”,中南大學博士學位論文,2002.

賴耿陽,“碳材料化學與工學”,復漢,台南市,1991.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw