進階搜尋


下載電子全文  
系統識別號 U0026-2708201312092000
論文名稱(中文) 理論分析穩態超音速流經雙楔形板引發雙斜震波之相互作用現象
論文名稱(英文) Theoretical Analyses of Interactions of Two Induced Oblique Shock Waves In A Steady Supersonic Flow Over A Double Wedge
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 101
學期 2
出版年 102
研究生(中文) 黃信搴
研究生(英文) Shin-chain Huang
學號 N96001347
學位類別 碩士
語文別 中文
論文頁數 171頁
口試委員 指導教授-劉中堅
口試委員-曾子彝
口試委員-張錦裕
口試委員-連文璟
中文關鍵字 理想氣體雙原子分子  超音速流  雙楔形斜板  斜震波  壓力-轉折角震波極圖 
英文關鍵字 perfect diatomic gas  supersonic  double wedge  shock wave  pressure-deflection shock polar 
學科別分類
中文摘要 本論文理論分析理想氣體雙原子分子(γ(比熱值)=1.4)超音速流經雙楔形斜板引導出雙斜震波兩者之間相互作用現象Supersonic Flow over Double Wedge Induced Shock Interactions,簡稱SDWISI。我們主要應用壓力-轉折角震波極圖解方法對五個上游流場馬赫數(M0=1.1、1.5、2、3、5)系列分別地變化第一楔型板角(θ1w)與第二楔型板角(θ2w),詳細計算此SDWISI流場可能發生屬於RR型態的多重解並繪製他們所對應的流場物理圖。θ1w與θ2w參數的變化均為M0的函數,θ1w自零度變化到約40度;θ2w自θ1w值變化到約50度。計算與分析得到足夠詳細的成果得以對上述五個不同 值於(θ1w-θ2w)平面上建構此SDWISI流場各不同型態解多重解之解域。我們對此研究re-entry(太空飛行器返大氣層)或進氣道重要的超/極音速流之SDWISI題目所得到成果與新的發現如下:
1.上述本論文SDWISI題目之M0、θ1w與θ2w條件範圍內,我們得到反射波為膨脹波之單一解係屬於Edney (1968)對兩個斜震波之間相互作用流場所定義的六種不同型態解中之Type VI型態解。於上述條件範圍內,檢視過現今文獻中報告有關兩個震波之間相互作用流場的單一解,本論文首次地提出了下列兩種新型SDWISI流場的單一解: (1)後向反射強斜震波解(2)後向反射弱斜震波解。
2.延續1,就SDWISI流場可能存在不同型態的多重解言,本論文成果發現存在著下列六種新型態的SDWISI流場多重解(1)單一反射強斜震波解(2)單一反射弱斜震波解(3)一個後向反射弱斜震波解與一個前向反射斜震波解(4)一個後向反射強斜震波解與一個後向反射弱斜震波解(5)兩個後向反射弱斜震波解(6)一個後向反射斜震波解、一個前向反射斜震波解與一個反射膨脹波解。
3.我們首次地對γ=1.4之SDWISI流場於M0=1.1、1.5、2、3、5條件下有系統地分別變化θ1w與θ2w兩個參數與應用(P-θ)斜震波與膨脹波極圖解方法提出了上述共六種新型態的多重解與Edney (1968) Type VI型解暨它們於(θ1w-θ2w)平面上的解域。
英文摘要 This thesis presents theoretical analyses of interactions of two induced oblique shock waves in a steady supersonic perfect diatomic gas (r=1.4) flow over a double wedge. In brief, the term SDWISI - Supersonic Flow over Double Wedge Induced Shock Interactions – is used throughout this work. Basically, we apply pressure-deflection shock polar graphical method, systematically varying first the second-wedge angle and then the first -wedge angle , to detailedly calculate and analyze RR (regular reflection) -type multiply possible wave interaction solutions of SDWISI with corresponding physical wave configurations drawn, for five upstream flow Mach numbers 1.1, 1.5, 2, 3 and 5. The variations of parameters the first -wedge angle and the second-wedge angle are fun -ctions of Mach number. The first -wedge angle varies from 0° to about 40°, while the second-wedge angle varies from maximum to about 50°. Quantitatively detailed and accurate theoretically calculated SDWISI solutions obtained allow us to construct characteristically different multiply possible solution regimes, including boundaries separating them, of SDWISI on the (the first -wedge angle - the second-wedge angle) plane for the about five Mach number’s. New findings for this re-entry or supersonic inlet closely related SDWISI problems obtained from this thesis are the following. (I) Within the ranges of Mach number , the first -wedge angle and the second-wedge angle parameters specified in our SDWISI problems given above, we obtain single SDWISI solution (m=1) of the type of reflected P.M. expansions, which belongs to type VI of the six different wave configurations reported by Edney (1968) discussing wave interactions between two oblique shocks. However, we obtain two new kinds of single SDWISI interaction solutions, not yet reported in the current literature. They are (1) backward-facing reflected strong oblique shock solution and (2) backward- facing reflected weak oblique shock solution.(II) For multiply possible SDWISI solutions, we obtain, in general, the following six different, new interaction solutions: (1) single reflected backward-facing strong oblique shock solution (2) single reflected backward-facing weak oblique shock solution (3) one backward-facing reflected weak oblique shock solution and one forward-facing reflected weak or strong oblique shock solutions (4) one backward-facing reflected strong oblique shock soluteion and one backward-facing reflected weak oblique shock solution (5) two backward-facing reflected weak oblique shock solutions (6) one backward-facing reflected weak oblique shock solution, one forward-facing reflected weak oblique shock solution, and one reflected P.M. expansion solu -tions. In a brief conclusion, we put forward six new interaction solutions and type VI interaction solution of Edney (1968), and their corresponding solution regimes of r=1.4 SDWISI problems on the (the first -wedge angle -the second-wedge angle) plane for five ’s for the first time, by systematically varying the first -wedge angle and the second-wedge angle for Mach number =1.1, 1.5, 2, 3 and 5 using (pressure-deflection) oblique shock and P.M. expansion polar diagrams.
論文目次 摘要……………………………………………………………………I
Abstract…………………………………………………………………III
誌謝……………………………………………………………………V
目錄…………………………………………………………………VI
圖目錄…………………………………………………………………X
符號說明……………………………………………………………XXII
第一章 緒論…………………………………………………………1
第二章 基本穩態馬赫反射流場理論介紹....................................6
§ 2.1馬赫反射流場現象之傳統與十次多項式參震波理論分析.........7
§ 2.2 穩態馬赫反射流場壓力、轉折角震波極分析方法....................13
§ 2.3 馬赫反射流場六種主要的不同特殊性質解說明........................18
§ 2.3.1 Wuest (Triple-root I, II )條件........................................18
§ 2.3.2 反射震波前後分界條件件........................................................20
§ 2.3.3 馮努曼(vN)或稱機械平衡條件................................................23
§ 2.3.4 反射震波下游音速 條件................................................24
§ 2.3.5 反射震波強弱分界條件............................................................25
§ 2.3.6 正常震波分離準則(RR Detach)條件......................................26
§ 2.4 穩態馬赫反射流場在正與負 平面處存在的特殊解曲線.........27
第三章 理論分析理想氣體雙原子分子超音速流經雙楔形斜板引導出雙斜震波兩者之間相互作用現象.......................................33
§ 3.1.1 SDWISI流場基本概念介紹暨此雙震波相互作用流場之壓力-轉折角斜震波極圖解理論介紹.........................................................................33
§ 3.1.2 SDWISI流場理論壓力-轉折角震波極圖解區分不同型態SDWISI反射為震波多重解.....................................................................................40
§ 3.1.3 震波極圖解與斜震波理論計算SDWISI流場多重解.............42
§ 3.2 =2之SDWISI流場 的臨界條件...........................................45
§ 3.2.1 曲線定義........................................................................45
§ 3.2.2 曲線定義............................................................................46
§ 3.2.3 曲線與 曲線交點具有 特殊性質.......50
§ 3.3 =2之 曲線定義...................................................................51
§ 3.4 SDWISI流場之 曲線之定義..................................................57
§ 3.5 =2之三個特殊條件下 的解域.............................................60
§ 3.6 =2之SDWISI流場系列地變化 與 流場多重解暨其解域變化.................................................................. ................................................62
§ 3.6.1 =1°..........................................................................................62
§ 3.6.2 =10°、 =20°.......................................................................63
§ 3.6.3 =21.1683°..............................................................................64
§ 3.6.4 =22.2°....................................................................................65
§ 3.6.5 =22.2988°..............................................................................66
§ 3.7 具物理意義之震波極理論SDWISI流場多重解..........................85
第四章 理想氣體雙原子分子超音速流經雙楔形斜板引導出雙斜震波兩者之間相互作用現象(SDWISI)在不同 值之變化 與 流場解暨其解域變化.......................................................................93
§ 4.1 =1.4、 =3之SDWISI流場 曲線之定義........................93
§ 4.2 =1.1之SDWISI流場系列地變化 與 流場多重解暨其解域變化................................................................................................................95
§ 4.3 =1.5之SDWISI流場系列地變化 與 流場多重解暨其解域變化................................................................................................................102
§ 4.3.1 =1°..........................................................................................102
§ 4.3.2 =9°..........................................................................................107
§ 4.3.2 =10°........................................................................................113
§ 4.4 =3之SDWISI流場系列地變化 與 流場多重解暨其解域變化
.....................................................................................................................117
§ 4.4.1 =20°.........................................................................................117
§ 4.4.2 =30°.........................................................................................129
§ 4.5 =5之SDWISI流場系列地變化 與 流場多重解暨其解域變化
....................................................................................................................135
§ 4.5.1 =1°..........................................................................................135
§ 4.5.2 =5°、 =20°.........................................................................144
§ 4.5.3 =30°........................................................................................149
§ 4.5.4 =40°........................................................................................159
第五章 結論...........................................................................................165
參考文獻………………………………………………………………169
參考文獻 Anderson, Jr. John D. “Modern Compressible Flow, ” New York : McGraw-Hill, (1982)
Ben-Dor, G. & Takayama, K., “The Inverse Mach Reflection,” AIAA Journal, Vol. 23, No. 12, pp. 18553-1855, (1985).
Ben-Dor, Vasilev E. I.,Elperin T., and Zenovich A. V., “Self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow over a double wedge,” AIP Physics od Fluids 15,L85, (2003)
Black Phil, Milanova Boriana, and Smith-Spark Laura “Russian meteor blast injures at least 1,000 people, authorities say,” CNN , (2013)
Edney Barry, “Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in The Presence of an Imping Shock,” Flygtekniska Forsocksanstalten, The Aeronautical Research Institute of Sweden, Meddelande 115, Report115, (1968)
Henderson, L. F., “On Expansion Waves Generated by the Refraction of a Plane Shock at a Gas Interface,” J. Fluid Mech., Vol. 30, part 2, pp. 385-402, (1967).
Henderson, L. F., “On the Confluence of Three Shock Waves in a Perfect Gas,” Aero. Quart., 15, 181-197, (1964).
Hu Z. M., Gao Y. L., Myong R. S., Dou H. S., and Khoo B. C., “Geometric critweion for RR MR transition in hypersonic double-wedge flows,” Physics of Fluids 22, 016101, (2010)
John James E.A., “Gas Dynamics,” Pearson Prentice, (1984)
Liu, J.J., “A Map of Multiplicity of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections in Diatomic Gases,” The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, 120-127, (2003).
Liu, J.J., “Theoretical Expressions for Limiting Conditions Separating Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 29th National Conference on Theoretical and Appolied Mechanics, Hsinchu, Taiwan, 1-8, (2005).
Liu, J.J., “Theoretical Formulas Characterizing Different Regimes of Perfect-Gas Three-Shock Theoretical Solutions of Steady Mach Reflections,” The 18th International Shock Interaction Symposium, Rouen, France, 1-4, (2008).
Liu, J.J., “Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332, (1996).
Olejniczak, J., Wright, M. J. & Candler. G. V. “Numerical Study of Shock Interactions on Double-Wedge Geometries,” AIAA Paper 96-0041, (1996).
Olejniczak Joseph, Candler Graham V., and Wright Michael J., “Experimental and Computational Study of High Enthalpy Double-Wedge Flow,” Fournal of Thermophysics and Heat Transfer, Vol. 13, No. 4, (1999)
Schrijer F. F. J., Scarano F., Oudheusden B. W. van, “Application of in a Mach 7 double-ramp flow,” Experiments in Fluids 41:353-363, (2006)
Shapiro Ascher H., “The Dynamics and Thermodynamics of Compressible Fluid Flow,” New York, Ronald Press Co., (1982)
Black Phil, Milanova Boriana, and Smith-Spark Laura “Russian meteor blast injures at least 1,000 people, authorities say,” CNN , (2013)
李玉成,「多原子分子氣體穩態三震波匯流現象之多重解理論分析: 」,國立成功大學工程科學系碩士論文,台南 (2003)。
曾國勇,「多原子分子理想氣體擬似穩態馬赫反射震波理論之多重解分析」,國立成功大學工程科學系碩士論文,台南 (2005)。
黃致豪,「穩態馬赫反射三震波理論之流場性質分析」,國立成功 大學工程科學系碩士論文,台南 (2006)。
鄭其昌,「多原子分子理想氣體擬似穩態馬赫反射之三震波點路徑角理論多重解分析」,國立成功大學工程科學系碩士論文,台南 (2007)。
許倉訓,「應用穩態馬赫反射參震波匯流十次多項式理論與斜震波理論計算穩態馬赫反射流場性質多重解」,國立成功大學工程科學系碩士論文,台南 (2009)。
劉博鈞,「馬赫反射與震波折射流場之参震波理論分析」,國立成功大學工程科學系碩士論文,台南,(2011)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw