進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2708201215311200
論文名稱(中文) 最佳數值搜尋原理應用於土壤液化評估
論文名稱(英文) Evaluation of Soil Liquefaction by Optimum Seeking Method
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 黃敬元
研究生(英文) Jing-Yuan Huang
學號 n66994293
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-陳景文
口試委員-郭玉樹
口試委員-陳建元
口試委員-徐登文
口試委員-陳怡睿
中文關鍵字 土壤液化  主成分分析  最佳數值搜尋 
英文關鍵字 Soil liquefaction  Principle Component Analysis Method  Optimum Seeking Method 
學科別分類
中文摘要 許多地震衍生災害之中,土壤液化現象是大地工程界經常探討的課題之一,也因此發展出許多不同的液化評估方法。在土層液化評估流程中,經常是以累積現地地震液化案例,配合實驗室或現地取樣試驗參數,進而發展出液化評估模式;此外,各種影響液化潛勢的因素所造成的液化潛勢程度亦有所不同。
本研究首先運用主成分分析方法,考量過去液化評估中運用過的影響因素相互之間的關係,再進行因素縮減,並予以定量評估。接著分別運用最佳數值搜尋原理之Golden section method及Fibonacci seeking method,針對國內外所發表的地震液化現地案例之現地鑽探調查資料,進行分析、計算及檢核,藉以建構一個簡捷、有效的液化潛勢統合評估模式。
結果顯示,本研究分別以Golden section method及Fibonacci seeking method國內外案例之現地資料所發展的統合評估模式,其液化判定成功率均約達80%,皆有其合理之評估能力,可擴展應用於大地工程理論與實務設計時之參考,對於現地液化防治提供更為合宜資源分配。
英文摘要 Soil liquefaction is always the one of the popular research topic related to numerous disasters induced from earthquake. Various methods used to assess the potential of the soil liquefaction have been developed in the past. In progress of evaluating potential of the soil liquefaction, major impact factors which affected different levels of soil liquefaction potential are set up. Case studies are usually conducted and the necessary soil strata properties are collected from field exploration and observed from laboratory experiment.
The Principle Component Analysis Method was adopted in this study; firstly, various impact factors related to the potential of soil liquefaction which presented in the literatures were evaluated, then only several major impact factors were selected for the evaluation with quantifying. Both Golden Section Method and Fibonacci Seeking Method were adopted to analyze and check those data collected from the sites where soil liquefaction resulted from earthquakes which happened both in domestic and in abroad. In summary, a simple and effective model that integrates several other soil liquefaction potential models is developed in this study.
Consequently, the model that developed in this study is able to judge the possibility of soil liquefaction in the soil stratum and the rate of successful evaluation is more than 80%. The model can be applied to the of geotechnical engineering practice.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 2
1.4研究流程 3
第二章 文獻回顧 5
2.1土壤液化定義 5
2.2土壤液化機制 6
2.3影響土壤液化之因素 7
2.3.1土壤特性 7
2.3.2 環境因素 9
2.3.3地震特性 10
2.4土壤液化潛能評估法 10
2.4.1簡易準則分析法 10
2.4.2簡易經驗分析法 11
2.4.3總應力分析法 31
2.4.4有效應力分析法 32
2.5 最佳化方法 32
第三章 研究方法 34
3.1主成分分析 34
3.2最佳數值搜尋方法 36
3.2.1單變數最佳數值搜尋法-Fibonacci seeking method 36
3.2.2單變數最佳數值搜尋法-Golden section method 39
3.2.3多變量最佳數值搜尋法 41
第四章 液化評估模式建立 43
4.1影響液化因素之擇取 43
4.2影響液化之主成分因素分級 49
4.3液化潛勢評估模式建構 57
4.3.1 Stark & Olson現地資料訓練及測試 57
4.3.2 集集地震現地資料訓練及測試 60
4.4 液化潛勢評估模式驗證 63
4.4.1 Stark & Olson(1995)現地資料驗證 63
4.4.2 集集地震現地資料驗證 65
4.5 液化潛勢評估統合模式建構與驗證 67
4.5.1液化統合模式之建構 67
第五章 結論及建議 73
5.1 結論 73
5.2 建議 74
參考文獻 75
附錄一 Stark & Olson(1995)之現地資料 81
附錄二 集集地震現地土壤鑽孔資料 85
參考文獻 1. 古志生,「CPT土壤分類及液化評估之研究」國立成功大學土木工程研究所博士論文,2001。
2. 李雅芬,「基於可靠度理論之土壤液化機率評估法之研究」,國立成功大學土木工程研究所博士論文,2007。
3. 亞新工程顧問股份有限公司,「土壤液化評估與處理對策研擬─第一期計畫(彰化員林鎮、大村鄉、社頭鄉)總報告」,2000。
4. 上官百龍,「最佳數值搜尋法在土壤液化潛勢評估之研究」,長榮大學土地管理與開發學系研究所碩士論文,2001。
5. 施政杰,「能量式液化評估模式之研究」,國立成功大學土木工程研究所碩士論文,2003。
6. 施繼揚,「遲滯圈能量原理應用於液化潛勢評估模式之建置」,國立成功大學土木工程研究所碩士論文,2009。
7. 范恩碩,「以九二一集集地震案例套討細粒料對液化潛能評估之影響」,國立成功大學土木工程研究所碩士論文,2004。
8. 張益騰,「類神經網路結合非線性能量消散原理應用於土壤液化潛能評估之研究,」國立成功大學土木工程研究所碩士論文,2010。
9. 張浼珣,「初步液化潛能分區法之研究」,國立成功大學土木工程研究所碩士論文,2005。
10. 曹庭偉,「能量式液化機率分析模式之建置」,國立成功大於土木工程研究所碩士論文,2010。
11. 陳俶季,「土壤液化潛能之風險評估」,地工技術雜誌,第38期,第5~16頁,1992。
12. 陳景文,「CPT資料在液化危害度估之應用」,國科會計畫,2002。
13. 陳順宇,「多變量分析」,華泰書局,2000。
14. 彭成麒,「貫入試驗之倒傳遞類神經網路與頻散曲線之有線差分法評估地盤剪力波速」,國立台灣大學土木工程研究所碩士論文,2002。
15. 辜炳寰,「類神經網路於土壤液化評估之應用」,國立成功大學土木工程研究所碩士論文,2002。
16. 辜炳寰、胡光復、沈哲緯、鄭錦桐、林伯勳,「最佳化方法於工程上之應用」,中興工程季刊,第103期,第13-24頁,2009。
17. 賴聖耀、林炳森、李豐博、謝明志,「荷式錐貫入試驗與液化可靠度之相關研究」,土木水利,第十六卷,第二期,第43-60頁,1989。
18. 鍾永琪,「屏東地區土層液化潛能評估」,國立成功大學土木工程學系碩論文,2002。
19. 羅建民,「剪力波速評估土壤液化潛能-模糊類神經網路」,國立台灣大學土木工程研究所碩士論文,2003。
20. Belegundu, A. D. and T. R. Chandrupatla”Optimization Concepts and Applications in Engineering,”Prentice-Hall, Inc.,1999.
21. Casagrande, A., “Characteristics of Cohesionless Soil Affecting the Stability of Slope and Earth Fills,” Journal of the Boston Society of Civil Engineering, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineering, pp. 257-276,1936.
22. Chen, Y.R., Hsieh, S.C., and Shan-Kung, B.L., “A Practical Method in Evaluating Liquefaction Potential of Soils,” The Proceedings of The Thirteenth International Offshore and Polar Engineering Conference, Honolulu , May. 2003 , Vol. II, pp. 481-485 , Hawaii, USA.
23. Chen, Y.R., Hsieh, S.C., Chen, J.W. and Shih, C.C., ”Energy-based Probabilistic Evaluation of Soil Liquefaction,” Soil Dynamics and Earthquake Engineering 25, pp. 55-68,2005.
24. Cybenko G., “Approximation by Superpositions of a Sigmoidal Function,” Urbana: University of Illinois,1989.
25. Davis, R.O. and Berrill J.B., “Energy Dissipation and Seismic Liquefaction in Sands,” Earthquake Engineering and Structure Dynamics, Vol. 10, pp. 59-68,1982.
26. Davis, R.O. and BerrillJ.B.,“Pore Pressure and Dissipated Energy in Earthquake-Field Verification,”Journal of Geotechnical Engineering,ASCE, Vol.127, No.3, March(2001).
27. Dobry, R., Ladd, R.S., Yokel, F.Y., Chung, R.M., and Powell, D., “Prediction of Pore Water Pressure Buildup and Liquefaction of Sands During Earthquake by the Cyclic Strain Method,” NBS Building Science Seriess138, US Department of Commerce, pp. 152 ,1982.
28. Geller, R.J., "Scaling Relations for Earthquake Source Parameters and Magnitudes," Bull. Seism. Soc. Am., 66 , pp. 1501-1523,1976.
29. Goldberg, D. E. “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley Publishing Company,1989.
30. Gutenberg, B. and Richter, C.F., “Magnitude and Energy of Earthquakes, ” Ann. Geofis., 9, pp. 1-15,1956.
31. Hall, W.J. and McCabe, S.L., ”Current Design Spectra: Background and Limitations, Earthquake Hazards and the Design of Constructed Facilities in the Eastern United States,” Annals of the New York Academy of Sciences, pp. 222-233,1989.
32. Herif, M.A., Ishibashi, I., and Tsuchiga, C., “Saturated Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE Vol. 103, No. 8, pp. 914-917,1977.
33. Idriss, I.M., and Seed, H.B., ”Seismic Response of Horizontal Layers,” Journal of the Soil Mechanics and Foundations Divion, pp. 1003-1031,1968.
34. Ishihara, K., and Tadatsu, H., “Effects of Over-consolidation k0 Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol.19, No. 4, pp. 59-68 ,1979.
35. Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of Over consolidation on Liquefaction Characteristic of Sand Containing Fine”, Dynamic Geotechnical Test, American Society for Testing and Materials,pp.246-264 ,1978.
36. Iwasaki, T., “Soil Liquefaction Study in Japan: State-of-the-Art,” Soil Dynamics and Earthquake Engineering, Vol.5, No. 1 ,1986.
37. Iwasaki, T., Tatsouoka, F., and Takagi, Y., “Shear Moduli of Sand Under Cyclic Torsional Shear Loading,” Soils and Foundations, Vol.18, No. 14, pp.1-18,1978.
38. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice Hall Publishing, Upper Saddle River, NJ, p. 653,1996.
39. Law, K.T., Cao,Y.L., and He,G.N., “An Energy Approach for Assessing Seismic Liquefaction Potential,” Canadian Geotechnical Journal, 27(3), pp. 320-329,1990.
40. Lee, M.K.W. and Finn, W.D.L. ,“Dynamic Effective Stress Response Analysis of Soil Deposits with Energy Transmitting Boundary Including Assessment of Liquefaction Potential,” Soil Mechanics Series No. 38, University of British Columbia, Vancouver, Canda ,1978.
41. Liao, S. C. and Whitman, R. V., “Overburden Correction Factors for SPT in Sand”, Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT3, pp.373 -377, 1986.
42. Mulilis, J.P., Mori, K., Seed, H.B., and Chan, C.K., “Resistance to Liquefaction Due to Sustained Pressure,” Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No.GT7, pp. 793-797 ,1977.
43. Nemat-Nasser, S. and Shokooh, A., “A Unified Approach Densification and Liquefaction of Cohesionless Sand in Cyclic Shearing,” Canadian Geotech. J. 16, pp. 659-678 ,1979.
44. Peck, R. B., Hanson, W. E. and Thornburn, T. H., “Foundation Engineering, ”Wiley , New York,1974.
45. Pun, L., Introduction to optimization practice, John Wiley, 1975.
46. Randall, M.J.,"The Spectral Theory of Seismic Sources," Bull. Seism. Soc. Am., 63, pp.1133-1144,1973.
47. Schofield, A. and Wroth, P., “Critical State Soil Mechanics,” McGraw-Hill Book Company, New York, pp. 310,1968.
48. Seed, H.B., Idriss, I.M., Makdisi, F. and Banerji, N., “Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis”, EERC Report 75-29, Earthquake Engineering Research Center, University of California, Berkeley, 1975.
49. Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical Engineering, ASCE, Vol.111, No.12, pp.1425-1445,1985.
50. Seed, H.B. Peacock, ”Test Procedure for Measuring Soil Liquefaction Characteristics,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119 ,1971.
51. Seed, H.B., and Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No. SM8, pp. 1249-1273,1971.
52. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., “The Influence of SPT Procedure in Soil Liquefaction Resistance Evaluation,” Report No. EERC 84-15, Earthquake Research Center, University of California, Berkeley, California ,1984.
53. Stark, T.D. and Olson, S.M. 1995. Liquefaction resistance using CPT and field case histories. Journal of Geotechnical Engineering, ASCE 121(12): 856-869.
54. Streeter, V.L., Wylie, E.B., and Richart, F.E., “Soil Motion Computations by Characteristic Methods,” ASCE National Structural Engineering Conference, San Francisco ,1973.
55. Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content,” Soils and Foundations, JSSMFE, Vol.23, No. 4, pp. 56-74 ,1983.
56. Walsh, G.R., Methods of Optimization, John Wiley,1975.
57. Youd, T.L., and Idriss, I. M., “Liquefaction Resistance of Solils: Summary Report from the 1996 NCCER and 1998 NCCER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical and Geoenviromental Engineering, April, pp. 297-313,2001.
58. Zhang, L., “Prediction seismic Liquefaction Potential of Sands by Optimum Seeking Method,” Soil Dynamics and Earthquake Engineering 17, 1998, pp.219-226
59. Zhang, L., “Assessment of Liquefaction Potential Using Optimum Seeking Method,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.8, Aug. 1998, pp.739-748
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw