進階搜尋


下載電子全文  
系統識別號 U0026-2708201212452300
論文名稱(中文) 太陽能光電與熱回收混合系統之效益評估
論文名稱(英文) Efficiency Assessment of the Combined Photovoltaic and Heat Recycling System
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系碩博士班
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 廖仕麒
研究生(英文) Shih-Chi Liao
學號 p16994105
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-趙儒民
口試委員-楊宏澤
口試委員-林輝政
口試委員-白富升
中文關鍵字 PV/T混合系統  分散式太陽能發電系統  最大功率點追蹤技術 
英文關鍵字 Photovoltaic/Thermal hybrid system  distributed solar energy harvesting system  maximum power point tracking 
學科別分類
中文摘要 本論文藉由探討光電(Photovaltaic)與熱回收(Thermal Recycling)混合系統(PV/T)之應用,期望提出一套利用廢熱回收裝置來提升整體太陽能電熱系統效率。PV/T混合系統之開發工作包括:太陽能發電系統(含二次式極值法之最大功率點追蹤技術應用)、廢熱回收系統之架設(含熱水回收)及太陽能電池與加壓馬達之功率量測。利用美商國家儀器公司的Compact RIO(cRIO)嵌入式控制器,並結合周邊模組進行系統參數之量測與控制,系統之開發得以整合並達到吾人實驗目的之需求。
太陽能發電系統利用分散式發電系統的架構於太陽能板下配置專屬之最大功率追蹤及DC/DC變壓器,以掌握溫度與日照度變化造成最大功率點位置的改變;廢熱回收系統以霧狀水流降低太陽能電池背板溫度,並以實驗探討PV/T混合系統之最佳工作條件,藉此來實現一套具有高整體效率之PV/T混合系統,也希望本研究數據可作為往後其它相關太陽能光電與熱回收混合系統應用之參考。
英文摘要 This study uses a hybrid system of a photovoltaic solar panel and a thermal-recycling hot-water arrangement (PV/T) to discuss the overall PV and hot water generation efficiency. The development of this hybrid system includes a solar panel with its own DC/DC converter operating at its maximum power point condition by quadratic maximization technique, and a hot water system using sprinkle nozzles to recycle the thermal heat from the back side of the solar panel. The entire mechatronic system operates under NI compact RIO platform including the embedded controller, input/output modules and self-developed DC/DC converter for system variables measuring and controlling.
Thanks to the development of the distributed PV harvesting system, this work is able to generate maximum possible solar energy from the sun at changing insolation and any temperature variation due to heat recycling process of the water droplets. Experiment observation shows that the cooling system can increase the PV panel’s efficiency up to 4.06 %, and the thermal efficiency is about 25%~40%. It is then possible to identify the optimal working conditions for maximum PV power generation and heat recycling for the hybrid system in consideration. The work can be also helpful in designing a larger hybrid PV/T system for residential purpose.
論文目次 摘 要 II
Abstract III
致 謝 IV
目 錄 V
表目錄 IX
圖目錄 X
符號表 XIV
中英文對照表 XVI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 研究方法 7
1-4 論文架構 8
第二章 太陽能光電與光熱轉換系統 10
2-1 一般型太陽能熱水系統之簡介 10
2-1-1 集熱器 10
2-1-2 蓄水桶 12
2-1-3 控制系統 13
2-2 一般型太陽能熱水系統之分類與工作原理 13
2-2-1 自然循環型太陽能熱水器 13
2-2-2 強制型太陽能熱水器 14
2-3 太陽能電池發電基本原理 15
2-4 太陽能電池種類與用途 16
2-5 太陽能最大功率點追蹤技術 17
2-5-1 電壓迴授法 19
2-5-2 功率迴授法 20
2-5-3 擾動觀察法 21
2-5-4 增量導電法 23
2-5-5 二次式極值法 25
第三章 太陽能光電與熱回收混合型系統設計 27
3-1 實驗地點的選定 27
3-2 全尺寸模型實驗規劃 27
3-3 實驗裝置設計 29
3-4 量測儀器裝置 34
3-4-1 控制器 34
3-4-2 嵌入式I/O模組 34
3-4-3 加壓泵浦與電磁閥 37
3-4-4 太陽能功率照度計 38
3-4-5 DC/DC升降壓轉換器模組 39
3-4-6 太陽能電池與RTD溫度感測器 40
3-5 分散式架構應用於PV/T混合系統 41
第四章 實驗流程規畫與試驗方法 43
4-1 PV/T混合系統架構介紹 43
4-2 實驗變因設計 49
4-3 廢熱回收試驗方法 53
4-4 性能評估方法 54
4-4-1 太陽能效率評估 54
4-4-2 PV/T系統集熱性能試驗評估 55
4-4-3 系統整體效率評估 57
第五章 實驗結果與評估 58
5-1 太陽能電池發電特性 58
5-2 實驗數據 60
5-2-1 太陽能電池背板溫度設定45℃時啟動灑水機制 (實驗一) 60
5-2-2 太陽能電池背板溫度設定50℃時啟動灑水機制 (實驗二) 62
5-3 系統整體綜合分析比較 65
5-4 經濟效益分析 71
第六章 結論與建議 74
6-1 結論 74
6-2 建議 76
參考文獻 78
參考文獻 [1]網頁. "IEK:2020年太陽能發電成本接近尖峰用電價," http://tw.epochtimes.com/b5/5/11/22/n1129052.htm.
[2]N. TH, T. Y, S. M et al., “Hybrid Photovoltaic/Thermal Solar Systems,” Solar Energy, vol. 72, pp. 217-234, 2002.
[3]W. S., G. M., and W. M., "Applied Photovoltaics," 1998.
[4]R. A., and R. P., “"Capthel", A 66% efficient solar module and the "Ecothel" co-generation solar system,” In Proceedings of First WCPEC, pp. 1012-1015, 5-9 December, 1994.
[5]F. S. Pai, and R. M. Chao, “A New Algorithm to Photovoltaic Power Point Tracking Problems with Quadratic Maximization,” IEEE Transactions on Energy Conversion, DOI 10.1109 / TEC. 2032575, vol. 25, pp. 262-264, Mar., 2010.
[6]F. S. Pai, R. M. Chao, S. H. Ko et al., “Performance Evaluation of Parabolic Prediction to Maximum Power Point Tracking for PV Array,” Submitted to IEEE Transactions on Sustainable Energy, revised, 2011.
[7]M. D. Bazilian, “Photovoltaic cogenration in the built environment,” Solar Energy, vol. 71, pp. 57-69, 2001.
[8]G. H. P., and A. R. S., “Transient simulation of conventional hybrid photovoltaic/thermal air heating collectors,” International Journal of Energy Research, vol. 22, pp. 547-562, 1998.
[9] B. T, and B. B, “Thermodynamic cosiderations concerning the efficiency and possible utilization of combined quatum/thermal sloar energy converters,” Proc. ISES Solar World Congress, Budapest, vol. 4, pp. 25-30, 1993.
[10]L. B, “A hybrid amorphous silicon photovoltaic and thermal solar collector,” Solar Cells, vol. 19, pp. 131-138, 1986-1987.
[11]T.T.Chow, W.He, and J.Ji, “Hybrid photovoltaic-thermosyphon water heating system for residential application,” Solar Energy, vol. 80, pp. 298-306, 2006.
[12]H. W, C. T-T, J. J et al., “Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water,” Applied Energy, vol. 83, pp. 199-210, 2006.
[13]C. TT, H. W, and J. J, “An experimental study of facade-integrated photovoltaic/water-heating system,” Applied Thermal Engineering, vol. 27, pp. 37-45, 2007.
[14]B. J. Huang, T. H. Lin, W. C. Hung et al., “Performance Evaluation Of Solar Photovoltaic/Thermal Systems,” Solar Energy, vol. 70, pp. 443-448, 2001.
[15]網頁. "平板式太陽能集熱器," http://www.chinajnzz.com/shopView.asp?s_id=102.
[16]網頁. "太陽能熱水器構造," http://solar.rsh.ncku.edu.tw/t01_structure.php.
[17]網頁. "太陽能熱水器種類," http://solar.rsh.ncku.edu.tw/t01_kind.php.
[18]網頁. "太陽能電池發電原理," http://www.toptower.com.tw/tw/power/a02.gif.
[19]宋金蓮, 趙慧, 林珊 et al., 太陽能發電原理與應用, pp. 68-76.
[20]M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power point tracking,” IEEE Power Engineering Review, vol. 22, pp. 62-63, August, 2002.
[21]K. Harada, and G. Zhao, “Controlled power interface between solar cells and AC source,” IEEE Transactions on Power Electronics, vol. 8, pp. 654-662, October, 1993.
[22]C. R. Sullivan, and M. J. Powers, “A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle,” Annual IEEE Specialists Conference on Power Electronics, pp. 574-580, June, 1993.
[23]J. H. R. Enslin, “Maximum power point tracking: a cost saving neccessity in solar energy systems,” IEEE Proceedings on Electric Power Applications, vol. 147, pp. 15-20, Jane, 2000.
[24]J. A. Gow, and C. D. Manning, “Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources,” Proceedings of IEEE, vol. 147, pp. 15-20, Jane, 2000.
[25]C. C. Hua, and J. R. Lin, “Fully digital control of distributed photovoltaic power systems,” In Proc. IEEE Int, vol. 1, pp. 1-6, Jane, 2001.
[26]K. H. Hussein, I. Hoshino, T. Muta et al., “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” Proceedings of IEEE on Generation, Transmission and Distribution, vol. 142, pp. 59-64, Jane, 1995.
[27]網頁. "翔盟科技工程有限公司," http://www.skytechno1.com/product4.php.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw