進階搜尋


下載電子全文  
系統識別號 U0026-2708201014174400
論文名稱(中文) 單壁奈米碳管薄膜場效電晶體之製程及特性研究
論文名稱(英文) Fabrication and and Measurement Characteristics of Single-walled Carbon Nanotubes Field-effect Transistors
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 98
學期 2
出版年 99
研究生(中文) 鄭百勝
研究生(英文) Pai-Sheng Cheng
學號 p4697416
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-高騏
口試委員-劉建惟
口試委員-蕭鉉樺
中文關鍵字 奈米碳管  奈米碳網電晶體  高介電常數  雙極性電晶體  摻雜  酒精氣相化學沉積法  功函數 
英文關鍵字 Carbon Nanotubes  CNT-FETs  High-k  Ambipolar FET  Doping  ACCVD  Work function 
學科別分類
中文摘要 自從發現奈米碳管以來,近十幾年來關於奈米碳管材料的性質及其應用的研究不曾間斷。尤其單壁奈米碳管有許多卓越的電性及機械特性。本實驗是利用酒精氣相化學沉積法製備高純度單壁奈米碳管薄膜,作為場效電晶體的通道部分,並討論奈米碳網電晶體之特性。

實驗中製作不同的通道長度、寬度並且討論其尺寸效應,其中利用高介電常數材料取代傳統二氧化矽以改善其效能,以及採用上閘極方式製作電晶體。製作出的元件分別觀察其材料特性及電性,利用拉曼光學系統觀察奈米碳管成長的緻密程度,使用電子型場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM )觀察碳管的表面形貌等,研究設法將雙極性電晶體(ambipolar FET)轉變為單極性(unipolar),使用氧氣、氮氣摻雜,並選擇在不同的時機做摻雜,發現不同部位做摻雜會有不同的效果,最終發現以沉積氧化層後之元件摻雜最有效果,可能原因是金屬與碳管接面的功函數(Work function)上升所致。而對氧化層(HfO2)通氮退火可以提升氧化層之介電常數使單位電壓產生更多電流,並在退火過程中亦同時對奈米碳管做摻雜,過程中做出實際的電容,比較其介電常數的變化。
本研究奈米碳管電晶體的尺寸閘極長度最小降到10μm、開關比例(on-off ratio)可以達到107、最大電導可以高於10μS、場效遷移率計算出可以高達數百以上,並且可以將奈米碳管的雙極性經由簡易的通氣體退火轉變為P型或是N型操作奈米碳網電晶體。
英文摘要 In the past few decades, there are many researches about the material properties and application of carbon nanotubes, especially for single-walled carbon nanotubes which have many remarkable electric properties and the physical characteristics.
My study is to make thin films of high-purity single-walled carbon nanotubes by using the method of alcohol catalytic chemical vapor deposition(ACCVD). Due to the limitations of our instrμments, we design the size of our device in micron-scale and which the effects will be discussed later. We fabricated the top-gated carbon nanotubes field effect transistors (CNT-FETs) and one of which is used by newly developed method that replacing SiO2 by high-k material. In order to find its material and electric properties, we use Raman system to verify the quality of CNT and the surface morphology can be observed by the SEM.
The following shows several important points of my research :
At first we try to transform the polarity of transistor from bipolarity to unipolarity. We found that with different doping properties of oxygen and nitrogen, it shows degrees of results. The best result was the overall doping at last due to the increasing work function between metal part and CNT.
Furthermore, the nitrogen atmospheric annealing of the oxide layer also increase the dielectric which results in current gain, and the dielectric will be discussed later with the capacity is fabricated.
After all, the scale of the transistor can be reduced to 10 microns, and the mobility of the optimal SWNTs FET can reach 178.75 cm2/Vs and a transconductance of 10μS and the on-off ratio can be 107 as the best. With such improvement, the field effect mobility will be more the hundreds.
論文目次 目錄
簽名頁
中文摘要
英文摘要(Abstract)
致謝
目錄 Ⅰ
表目錄 Ⅳ
圖目錄 Ⅴ
第一章 序論 1
1-1 研究動機 1
1-2 奈米碳管發展概述 2
1-2-1奈米碳管的結構與性質 2
1-2-2奈米碳管成長機制 4
1-2-3奈米碳管合成方式 6
第二章 文獻回顧 9
2-1奈米碳管電晶體的研究歷史 10
2-2高介電常數的應用 10
2-3奈米碳管電晶體的摻雜效應 10
第三章 元件製程與量測 13
3-1奈米碳管網薄膜成長 13
3-1-1奈米碳管以酒精為催化劑之化學氣相沉積 13
3-1-2成長奈米碳管前之製程準備 13
3-1-3成長奈米碳管網 13
3-2材料物性量測 15
3-2-1場發掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 15
3-2-2穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 15
3-2-3拉曼光譜分析儀 (Raman Spectrometer) 15
3-3奈米碳管電晶體製備 17
3-4電性量測參數 19
3-4-1汲極電流-汲極電壓量測 19
3-4-2汲極電流-閘極電壓量測 20
3-4-3介電層之電容量測 23
3-4-4遷移率量測 26
3-5實驗製程及量測改進 27
3-5-1遷移率量測 27
3-5-2遷移率量測 28
3-6實驗儀器介紹 29
第四章 奈米碳管電晶體不同通道尺寸及元件摻雜參數之特性研究 34
4-1 奈米碳管電晶體不同通道尺寸之電性研究 34
4-1-1不同閘極寬度之特性 34
4-1-2不同閘極長度之特性 36
4-2 奈米碳管電晶體摻雜參數之特性研究 37
4-2-1標準製成奈米碳管電晶體之特性 38
4-2-2奈米碳管摻雜之特性與討論 38
4-2-3沉積氧化層-二氧化鉿(HfO2)後之元件摻雜特性與討論 39
4-3奈米碳管電晶體摻雜參數之特性研究 41
4-3-1改變氧氣的通入量 41
4-3-2改變氧氣摻雜的時間 41
第五章 結論 43
參考文獻 45
參考文獻 [1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354 -56. (1991).

[2]Y. Y. Wei and G. Eres, “Directed assembly of carbon nanotube electronic circuits, ” Applied Phsical Letters, 76-25(2000).

[3]S. H. Shiau, “Growth of single-walled carbon nanotubes thin film and its patterning as an N-type Field-Effect Transistor device using integrated circuit compatible process,”國立成功大學航太所博士論文(2008).

[4]W. Hoenlein, “New prospects for microelectronics: Carbon Nanotubes, ” Jpn. J. Appl. Phys., 41- 4370 (2002).

[5]陳紹良,以微波化學氣相沉積法成長奈米碳管之研究,國立中央大學機械所碩士論文,2003。

[6]蘇清源,奈米碳管控制成長之方法研究,國立中央大學機械所碩士論文,2005。
[7] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273-483 (1996).

[8]S. B. Sinnott et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letter, 315 -25 (1999).

[9]黃承俊,背閘極式碳奈米管電晶體之研究,國立中央大學機械所碩士論文,2006
[10]M. Jose-Yacaman, M. Miki-yoshida, L. Rendon, “Catalytic growth of carbon microtubules with fullerene structure,” Appl Phys Lett., 62-2029.(1993).

[11]H. Jaeger, T. Behrsing, “Dual nature of vapour-grown carbon fibres,” Composite Sci Tech., 51, 231.(1994).

[12]M. Jose-Yacaman, H. Terrones, L. Rendon, Carbon, “Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles,” 33-669.(1995).

[13]S. B. Sinnott, “ Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, 315-25 (1999).

[14]楊博智,橫向碳奈米管的製造和傳導特性研究,國立嘉義大學光電暨固態電子研究所,2005。

[15] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim , “Crystalline Ropes of Metallic Carbon Nanotubes,” Science , 273-483 (1996).

[16]S. Zhu, C. H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui ,and A. Burger, “Growth oriention of carbon nanotubes by thermal chemical vapor deposition ,” Journal of Crystal Growth, 234 p.584-588.(2002).

[17]X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi- walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Thin Solid Films, 390 ,p.130-133.(2002).

[18]Y. C. Choi, Y. M. Shin, Y. H. Lee,and B. S. Lee, “Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition” , Appl Phys Lett , 76 , p.2367-2369(2000).

[19]Sander J. Tans, Alwin R. M. Verschueren, Cees Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, 393-49(1998).

[20]R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris. “Singleand multi-wall carbon nanotube field-effect transistors,” AppliedPhysics Letters, 73-2447 (1998).

[21]A. Javey, R. Tu, D. B. Farmer, J. Guo, Roy G. Gordon,
H. Dai, “High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts,” Nano Letters, 5-345 (2005).

[22]J. Kong, H. T. Soh, Alan M. Cassell, Calvin F. Quate, H. Dai, ”Synthesis of individual singlewalled carbon nanotubeson patterned siliconwafers,” Nature, 395-878 (1998).

[23]Hyongsok T. Soh, Calvin F. Quate, Alberto F. Morpurgo, Charles M. Marcus, J. Kong, H. Dai, “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbonnanotubes,” Applied Physics Letters, 75- 627(1999).

[24]N. Franklin, Q. Wang, Thomas W. Tombler, A. Javey, M. Shim, H. Dai, “Integration of suspended carbonnanotube arrays into electronic devices and electromechanicalsystems,” Applied Physics Letters, 81-913 (2002).

[25]Y. Zhang, Aileen Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes” , Applied PhysicsLetters, 79-3115 (2001).

[26]A. Javey, Q. Wang, W. Kim, and H. Dai, “Advancementsin Complementary Carbon Nanotube Field-Effect Transistors ,” IEDMTech. Digest. 741-68 (2003).

[27]A. Javey, J. Guo, D.. Farmer, Q. Wang, D. Wang, R. Gordon, M. Lundstrom, and H. Dai, ”Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-K Gate Dielectrics,” Nano Letters, 4 -447(2004).
[28]A. Javey and H. Dai, “Carbon Nanotube Electronics,”

[29]G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, E. Unger, F. Krcupl, W. Hoenlein, “Growth of Isolated Carbon Nanotubes with Lithographically Defined Diameter and Location ,” Nano Letters, 3 257-259 (2003).

[30]A. Bachtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaμmer, C. Schonenberger, “Aharonov–Bohm oscillations in carbon nanotubes,” Nature, 397-673 (1999).

[31]S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, “ Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems,” Journal of the American Chemical Society, 120, 603-604 (1 998)

[32]A. Rinzler, G. Hafner, J. H., Nikolaev P., Lou L., Kim S. G., Tomanek D, Nordlander P, Colbert D. T., Smalley R. E., “Unraveling Nanotubes: Field Emission from an Atomic Wire,” Science, 269-1550, (1995)

[33]J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai, “ Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, 395,878-881 (1998)

[34]W. Hoenlein, “New Prospects for Microelectronics: Carbon Nanotubes,” Japanese Journal of Applied Physics, 41, 4370-4374, (2002)

[35] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors Applied ,” Physics Letters, 73, 2447-2449 (1998)

[36]Tans, S. J., A. R. M. Verschueren, and C. Dekker, “Room- temperature transistor based on a single carbon nanotube,” Nature, 393- 49 (1998).


[37] L. Robinson, S.B. Lee, K. B. K Teo, M. Chhowalla, G. A. J .Amaratunga, W. Milne, D. Williams, D. G. Hasko and H. Ahmed , “Fabrication of self-aligned side gates to carbon nanotubes,” Nanotechnology, 14-290 (2003)

[38]朱明毅、林佩洵、鄭百勝,“氧化層以鉿化合物取代二氧化矽改善CMOS的特性”,中國材料年會(2007)。

[39]A. Javey, H. Sub Kim, M. Brink, Q. Wang, A. Ural, J. GUO,P. Mcintyre, P. Mceuen, M. Lundstrom and H. Dai, “High-K dielectrics for advanced carbonnanotube transistors and logic gates,” Nature Publishing Group(2002).

[40]M. H. Yang, K. B. K. Teo,and W. I. Milne,“Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts,” Applied Physics Letters, 87-253116 (2005).

[41]V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, “Controlling doping and carrier injection in carbon nanotube transistors,” Applied Phsical Letters,80-15 (2002).

[42]D. Perello, M. J. Kim, D.K. Cha, G. H. Han, D. J. Bae, S. Y. Jeong, Y. H. Lee, and M. Yun, “Schottky Barrier Engineering in Carbon Nanotube with Various Metal Electrodes, ”Proceedings of the 7th IEEE International Conference on Nanotechnology(2007).

[43]Z. Chen, J. Appenzeller, J. Knoch, Y.M. Lin, and P. Avouris,“ The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors,” Nano Letters(2005).

[44]M. Freitag, J. C. Tsang, A. Bol, D. Yuan, J. Liu, and P. Avouris, “Imaging of the Schottky Barriers and Charge Depletion in Carbon Nanotube Transistors,” Nano Letters (2007).

[45]Z. Zhang, X. Liang, S. Wang, K. Yao, Y. Hu,Y. Zhu, Q. Chen, W. Zhou, Y. Li, Y. Yao, J. Zhang, and L.M. Peng,“ Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits,” Nano Letters (2007).

[46]B.Q. Wei, R. Vajtai, and P. M. Ajayan, “ Reliability and current carrying capacity of carbon nanotubes,” Applied Physics Letters, 79-1172 (2001).

[47]F. Kreupl, A. P. Graham, G S. Duesberg, W. Steinhogi, M. Liebau, E. Unger, W. Honlein, “Carbon nanotubes in interconnect applications ,” Microelectronic Engineering, 64, 399-408(2002).

[48]A. Javey, M. Shim, and H. Dai, “Electrical properties and devices of large-diameter single-walled carbon nanotubes,” Applied Phsical Letters, 80-6(2002).

[49]R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris, ”Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes, ”Physical Review Letters, 87-25(2005).

[50] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol” Chemical Physics Letters, 360, p.229–234.(2002).

[51] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates,” Chemical Physics Letters, 377, p.49–54.(2003).

[52] Y. Murakami, Y. Miyauchi, S. Chiashi, S. Maruyama, “Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol,” Chemical Physics Letters, 374, p.53–58.(2003).

[53] Y. Murakami , S. Chiashi , Y. Miyauchi , M. Hu ,M. Ogura , T. Okubo, S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chemical Physics Letters, 385, p.298–303.(2004).
[54]V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, “Carbonnanotube Inter- and Intramolecular Logic Gates,” Nano Letter, 1 -453 (2001).

[55]D. Kang, N. park, J.h. Ko,"Oxygen-induced P-type doping of a long individual single-walled carbon nanotube,” Institute of Physics Publishing, Nano16-1048(2005)

[56]R. Martel, V. Derycke, P. Avouris, H. Kuzmany, J. Fink, M. Mehring, S. Roth, “ Electronic Properties of Novel Materials - Molecular Nanostructures, ” AIP Conference Proceedings,(2001).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw