進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707202014444700
論文名稱(中文) 高穩定度之準二維鈣鈦礦太陽能電池之研究
論文名稱(英文) Investigation of High Stability Quasi-two-dimensional Perovskite Solar Cells
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 108
學期 2
出版年 109
研究生(中文) 曾祥光
研究生(英文) Hsiang-Kuang Tseng
學號 Q16074087
學位類別 碩士
語文別 英文
論文頁數 88頁
口試委員 指導教授-許渭州
口試委員-方炎坤
口試委員-劉文超
口試委員-江孟學
口試委員-姚恩平
口試委員-賴英男
中文關鍵字 鈣鈦礦太陽能電池  二維鈣鈦礦  準二維鈣鈦礦  苯乙銨  正丁銨 
英文關鍵字 Perovskite solar cells  two-dimensional perovskite  quasi two-dimensional perovskite  phenethylammonium  n-butylammonium 
學科別分類
中文摘要 在近幾年的研究之中,有機鈣鈦礦太陽能電池雖發展快速,但由於鈣鈦礦層對水、氧敏感而造成其穩定性低的特性,一直是人們想改善的重點之一。在此工作中,我們採取摻雜兩種空間陽離子,苯乙銨與正丁銨,到三維鈣鈦礦之太陽能電池中,而這些結構普遍稱為準二維鈣鈦礦太陽能電池。首先,純二維鈣鈦礦之效率目前偏低,雖然二維鈣鈦礦具有更高帶隙,通常會導致更高的開路電壓,但二維鈣鈦礦屬於長碳鏈結構,而此種長碳鏈為絕緣材料,會造成短路電流密度下降。所以我們透過摻雜苯乙銨到三維鈣鈦礦中,其中能帶的對準與使用添加劑輔助形成垂直取向生長,能使得元件之開路電壓與短路電流得到改善。但因苯乙銨為苯環結構,在垂直取向生長中有苯環排列之問題,此問題會造成填充因子下降,所以我們摻雜另一種二維鈣鈦礦,正丁銨,來解決苯環排列之問題,進而提升填充因子。此外我們也透過增加鈣鈦礦層之厚度與最佳化鈣鈦礦層之薄膜品質,進一步提升短路電流,以達到更高的效率。最後本論文透過摻雜苯乙銨與正丁銨以完成高穩定性之準二維鈣鈦礦太陽能電池。
英文摘要 In recent years, although organic perovskite solar cells have been developed rapidly, the low stability of the perovskite layer, due to its sensitivity to water and oxygen, is always the one of the key points to be improve. In this work, we adopt doping two types of spacer cations, phenethylammonium and n-butylammonium, into three-dimensional perovskite solar cells, and these structures are generally called quasi-two-dimensional perovskite solar cells. First of all, the efficiency of the pure two-dimensional perovskite is currently low, two-dimensional perovskites possess higher band gap, which normally leads to higher Voc, but the two-dimensional perovskite is an insulating material, and belongs to a long carbon chain structure. Therefore, the structure will cause the short-circuit current density to drop. Therefore, by doping phenethylammonium into three-dimensional perovskites, the alignment of the energy band and the use of additives to help form a vertical orientation growth can improve the open circuit voltage and short circuit current of the devices. However, because the phenethylammonium is a benzene ring structure, there is a problem of benzene ring arrangement in the vertical orientation growth and it will cause a decrease in the fill factor. Therefore, we doped with another type of two-dimensional perovskite, n-butylammonium, to solve the problem of benzene ring arrangement, and thus improves the fill factor. In addition, we also increase the short-circuit current by increasing the thickness of the perovskite layer and optimizing the film quality of the perovskite layer to achieve higher efficiency. Finally, this thesis completed quasi-two-dimensional perovskite solar cells with high stability by doping phenethylammonium and n-butylammonium.
論文目次 摘 要 I
Abstract II
Content VI
Table Captions IX
Figure Captions XI
Chapter 1 Introduction 1
1-1 Background 1
1-2 Perovskite 4
1-3 Motivation 6
1-4 Organization of Thesis 9
Chapter 2 Operation Principle 10
2-1 Solar Spectrum 10
2-2 Mechanism of Perovskite Solar Cell 12
2-3 Solar Cell Characteristics 13
2-3-1 current-voltage curves (I-V curves) 13
2-3-2 Open-Circuit Voltage (Voc) 13
2-3-3 Short-Circuit Current (Isc) 14
2-3-4 Fill Factor (FF) 14
2-3-5 Power Conversion Efficiency (PCE) 15
Chapter 3 Experiment 17
3-1 Device Structure 17
3-2 Materials of Perovskite Solar Cells 18
3-3 Process for Device Fabrication 21
3-3-1 Pre-cleaning ITO Substrate 21
3-3-2 UV Ozone Treatment of ITO Surface 21
3-3-3 Fabrication of Hole Transport Layer 22
3-3-4 Fabrication of Active Layer 22
3-3-5 Fabrication of Electron Transport Layer 24
3-3-6 Fabrication of Hole Blocking Layer and Cathode 24
3-4 Measurements 25
3-4-1 Current-Voltage Measurement System 25
3-4-2 X-ray Diffraction 25
3-4-3 Scanning Electron Microscope 26
3-4-4 Atomic Force Microscope 26
3-4-5 Ellipsometry 27
3-4-6 UV-Vis-NIR Absorption Spectrum 27
Chapter 4 Results and Discussions 29
4-1 Comparison between quasi-2D and 3D perovskite 29
4-1-1 X-ray Diffraction 29
4-1-2 Scanning Electron Microscope 30
4-1-3 Atomic Force Microscope 31
4-1-4 Ellipsometry 33
4-1-5 UV-Vis-NIR Absorption Spectrum 33
4-2 Improvement of quasi-2D-based devices 34
4-2-1 The amounts of additives and the choice of passivating materials 34
4-2-2 Optimize the parameters of perovskite layer 38
4-2-3 Attempt various methods to improve the FF 42
4-3 Comparison of PCE and stability of quasi 2D and 3D perovskite solar cells 49
4-3-1 Comparison of quasi-2D and 3D perovskite solar cells 49
4-3-2 Comparison with other paper 52
Chapter 5 Conclusions and Future works 56
5-1 Conclusions 56
5-2 Future works 57
References 58
Figures 67
Chapter 1 67
Chapter 2 71
Chapter 3 74
Chapter 4 77
參考文獻 [1] M. Bhogaita, A. D. Shukla and R. P. Nalini, "Recent Advances in Hybrid Solar Cells Based on Natural Dye Extracts from Indian Plant Pigment as Sensitizers," Solar Energy, pp. 212-224, 2016.
[2] W. A. Badwy, S. A. Elmeniawy, and S. A. Hefez, "Improvement of The Photovoltaic Characteristics of Industrially Fabricated Solar Cells by Etching of The Si Surface," J. Sol. Energy Eng, p. 041007, Aug 2015.
[3] W. A. Badwy, "A Review on Solar Cells from Si-single Crystals to Porous Materials and Quantum Dots," J Adv Res., vol. 6, no. 2, pp. 123-132, Mar 2015.
[4] F. Dimroth, "Wafer Bonded Four-junction GaInP/GaAs//GaInAsP/GaInAs Concentrator Solar Cells with 44.7% efficiency," Prog. Photovolt: Res. Appl., vol. 22, no. 3, pp. 227-282, Mar 2014.
[5] C. H. Lee, H.R. Hsu amd S.Y. Tsai, "Progress Report on Perovskite Solar Cells," Industrial Materials, pp.85-93, 2014.
[6] National Renewable Energy Laboratory, "Best Research-Cell Efficiency Chart," 2019. [Online]. Available: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190703.pdf.
[7] N. A. Lee, G. E. Gilligan, and J. Rochford, "Solar Energy Conversion," in Green Chemistry, 2018, pp. 881-918.
[8] D. Weber, "CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure," Z. Naturforsch, vol. 33, no. 12, pp. 1443-1445, Dec 1978.
[9] D. Weber, "CH3NH3SnBrxl3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur," Z. Naturforsch, vol. 33b, pp. 862-865, Aug 1978.
[10] D. B. Mizti, "Organic−inorganic Perovskites Containing Trivalent Metal Halide Layers:  The Templating Influence of The Organic Cation Layer," Inorg. Chem., vol. 39, no. 26, pp. 6107-6113, Dec 2000.
[11] D. B. Mizti, "Templating and Structural Engineering in Organic-inorganic Perovskites," J. Chem. Soc., Dalton Trans, no. 1, pp. 1-12, 2001.
[12] A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, "Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2)," T Electrochem Soc, p. 397, Oct 2006.
[13] M. A. Green, Y .Hishikawa, E. D. Dunlop, D. H. Levi, and J. H. Ebinger, "Solar Cell Efficiency Tables (version 51)," Prog photovltaics, vol. 26, no. 1, pp. 3-12, Jan 2018.
[14] L. Etgar, P. Gao, Z. S. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Gratzel, "Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells," J. Am. Chem. Soc, vol. 134, no. 42, pp. 17396-17399, Oct 2012.
[15] M. M. Lee, J. Teuscher, T. N. Murakami, and H. J. Saith, "Efficient Hybrid Solar Cells Based on Meso-superstructured Organometal Halide Perovskites," Science, vol. 338, no. 6107, pp. 643-647, Nov 2012.
[16] A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin, and E. H. Sargent, "Materials Processing Routes to Trap-free Halide Perovskites,"Nano Lett., 2014, 14, 6281-6286
[17] T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. Cheng, H. M. Chen, M. C. Tsai, L. Y. Chen, A. A. Dubale and J. H. Bing, " Organometal Halide Perovskite Solar Cells: Degradation and Stability,"Energy Environ. Sci., 2016, 9, 323–356.
[18] T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. M¨uller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix and S. G. Mhaisalkar, " Nanostructuring Mixed-dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics," Adv. Mater., 2016, 28, 3653–3661.
[19] R. Hamaguchi, M. Yoshizawa-Fujita, T. Miyasaka, H. Kunugita, K. Ema, Y. Takeoka and M. Rikukawa, " Formamidine and Cesium-based Quasi-two-dimensional perovskites as photovoltaic absorbers," Chem. Commun., 2017, 53, 4366.
[20] C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp and M. G. Kanatzidis, " Ruddlesden–popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors," Chem. Mater., 2016, 28, 2852–2867.
[21] Z. Yang, L. Yang, G. Wu, M. Wang and H. Chen, " A Heterojunction Based on Well-ordered Organic-inorganic Hybrid Perovskite and Its Photovoltaic Performance," Acta Chim. Sin., 2011, 69, 627–632.
[22] J. Liu, J. Leng, K. Wu, J. Zhang and S. Jin, " Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-dimentional Perovskite Films," J. Am. Chem. Soc., 2017, 139, 1432.
[23] D. Ma, Y. Fu, L. Dang, J. Zhai, I. A. Guzei and S. Jin, " Single-crystal Microplates of Two-dimensional Organic–inorganic Lead Halide Layered Perovskites for Optoelectronics," Nano Res., 2017, 10, 2117–2129.
[24] K. Yao, X. Wang, Y. Xu, F. Li and L. Zhou, " Multilayered Perovskite Materials Based on Polymeric-ammonium Cations for Stable Large-area Solar Cell," Chem. Mater., 2016, 28, 3131–3138.
[25] T. Zhang, L. Xie, L. Chen, N. Guo, G. Li, Z. Tian, B. Mao and Y. Zhao, " In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films," Adv. Funct. Mater., 2017, 27, 1603568.
[26] J. F. Liao, H. S. Rao, B. X. Chen, D. B. Kuang and C. Y. Su, " Dimension Engineering on Cesium Lead Iodide for Efficient and Stable Perovskite Solar Cells," J. Mater. Chem. A, 2017, 5, 2066–2072.
[27] N. Q. Li, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and E. H. Sargent, " Ligand-stabilized Reduced-dimensionality Perovskites," J. Am. Chem. Soc., 2016, 138, 2649-2655.
[28] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp and M. G. Kanatzidis, " 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications," J. Am. Chem. Soc., 2015, 137, 7843-7850.
[29] L. Ke, X. Gan, W. Zhao, L. Guo, and H. Liu, “(C6H5C2H4NH3)2FAn-1PbnI3n+1: A Quasi Two-dimensional Perovskite with High Performance Produced via Two-step Solution Method,” Journal of Alloys and Compounds 788 (2019) 954-960
[30] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, " A Layered Hybrid Perovskite Solar Cell Absorber with Enhanced Moisture Stability," Angew. Chem., Int. Ed. 2014, 53, 11232.
[31] H. Tsai, W. Y. Nie, J.C. Blancon, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Evne, M. A. Alam, G. Gupta, J. Lou, M. J. Bedzyk, M. G. Kanatzidis, and A. D. Mohite, "High-efficiency Two-dimensional Ruddlesden-Popper Perovskite Solar Cells," Nature 2016, 8, 2852.
[32] Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su, K. Zheng, T. Pullerits, and Z. Liang, " Tailoring Organic Cation of 2D Air‐stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells," Adv. Energy Mater. 2017, 7, 1700162.
[33] C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J.-C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, A. D. Mohite, and M. G. Kanatzidis, " High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16," Chem 2017, 2, 427.
[34] C. Xuea, Y. Shia, C. Zhanga, Y. Lva, Y. Fenga, W. Tianc, S. Jinc, and T. Mab, "Favorable Growth of Well-crystallized Layered Hybrid Perovskite by Combination of Thermal and Solvent Assistance," Journal of Power Sources 422 (2019) 156–162
[35] X. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang, C. Chen, W. Liu, J. Yan, W. Yang, and H. Chen, " Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability," Small 2017, 13, 1700611.
[36] X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang, J. Yan, Z. Zhang, X. Lu, and H. Chen, " Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11%," Adv. Energy Mater. 2018, 8, 1702498
[37] X. Yan, S. Hu, Y. Zhang, H. Li, and C. Sheng, “Methylammonium Acetate as An Additive to Improve Performance and Eliminate J-V Hysteresis in 2D Homologous Organic-inorganic Perovskite Solar Cells,” Solar Energy Materials and Solar Cells, 191 (2019) 283–289
[38] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, and Z. Ning, " Highly Oriented Low-dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance," J. Am. Chem. Soc. 2017, 139, 6693.
[39] D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp, and M. G. Kanatzidis, " Thin Films and Solar Cells Based on Semiconducting Two-dimensional Ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 Perovskites," ACS Energy Lett. 2017, 2, 982.
[40] J. Zhang, L. Zhang, X. Li, X. Zhu, J. Yu, K. Fan, “Binary Solvent Engineering for High-performance Two-dimensional Perovskite Solar Cells,” ACS Sustainable Chem. Eng. 2019, 7, 3487−3495
[41] Nick84, "Solar Irradiance Spectrum above Atmosphere and at Surface," [Online]. Available: https://en.wikipedia.org/wiki/Solar_irradiance#/media/File:Solar_spectrum_en.svg.
[42] J. Jeong, "PHOTOVOLTAICS: Measuring the 'Sun'," Laser Focus World website, May 2009. [Online]. Available: https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun.
[43] J. P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Gratzel, and A. Hagfeldt, "The Rapid Evolution of Highly Efficient Perovskite Solar Cells," Energy Environ. Sci., vol. 10, no. 3, pp. 710-727, Mar 2017.
[44] H. S. Jung, and N. G. Park, "Perovskite Solar Cells: From Materials to Devices," Small, vol. 11, no. 1, pp. 10-25, Jan 2015.
[45] N. G. Park, "Perovskite Solar Cells: An Emerging Photovoltaic Technology," Materials Today, vol. 18, no. 2, pp. 65-72, Mar 2015.
[46] S. D. Stranks, V. M.Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, "Recombination Kinetics in Organic-inorganic Perovskites: Excitons, Free Charge, and Subgap States," Phys. Rev. Applied, vol. 2, no. 3, p. 034007, Sep 2014.
[47] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S D. Stranks, H. J. Snaith, and R. J. Nicholas, "Direct Measurement of The Exciton Binding Energy and Effective Masses for Charge Carriers in Organic-inorganic Tri-halide Perovskites," NATURE PHYSICS, vol. 11, no. 7, pp. 582-U94, Jul 2015.
[48] E. L. Lim, C. C. Yap, M. H. H. Jumali, M. A. M. Teridi, and C. H. Teh, "A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications?," NANO-MICRO LETTERS, vol. 10, no. 2, p. 27, Apr 2018.
[49] [Online]. Available:https://www.pveducation.org/pvcdrom/solar-cell-operation.
[50] D. Bartesaghi, I. D. Perez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, and L. J. A. Loster, "Competition between Recombination and Extraction of Free Charges Determines The Fill Factor of Organic Solar Cells," NATURE COMMUNICATIONS, vol. 6, p. 7083, May 2015.
[51] S. M. Sze, "Semiconductor Devices: Physics and Technology-2nd ed," John Wiley and Sons, 1985.
[52] Q. Xu, F. Wang, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou and Y. Li, "High-performance Polymer Solar Cells with Solution-processed and Environmentally Friendly CuOx Anode Buffer Layer," ACS Appl Mater Interfaces., vol. 5, no. 21, pp. 10658-10064, Oct 2013.
[53] D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi, D. Yuan, J. Wei, C. Huang, J. Tang, and M.K. Fung, "Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ doped PEDOT:PSS Hole Transport Layers," J. Mater. Chem. A, vol. 5, no. 12, pp. 5701-5708, Jan 2017.
[54] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, "CH3NH3PbI3 Perovskite/Fullerene Planar-heterojunction Hybrid Solar Cells," Adv Mater, vol. 25, no. 27, pp. 3727-3732, Jul 2013.
[55] W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu, David S. Ginger, and Alex K.-Y. Jen, " Two-dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency," ACS Energy Lett. 2018, 3, 2086−2093.
[56] X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You, " Efficient Green Light-emitting Diodes Based on Quasi-two-dimensional Composition and Phase Engineered Perovskite with Surface Passivation," NATURE COMMUNICATIONS, 2018, 9:570.
[57] L. Hu, M. Li, K. Yang, Z. Xiong, B. Yang, M. Wang, X. Tang, Z. Zang, X. Liu, B. Li, Z. Xiao, S. Lu, H. Gong, J. Ouyang and K. Sun, 'PEDOT:PSS Monolayers to Enhance The Hole Extraction and Stability of Perovskite Solar Cells,' J. Mater. Chem. A, 2018, 6,16583
[58] [Online]. Available:https://en.wikipedia.org/wiki/Buckminsterfullerene.
[59] [Online]. Available:https://www.dojindo.com/store/p/589-Bathocuproine.html.
[60] L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, J. Fu, Z. Xiong, X. Li, X. Tang, Z. Zang, S. Zhang, L. Sun, and M. Li, “Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by The Dual Effect of NaCl-Doped PEDOT:PSS,” ACS Appl. Mater. Interfaces, 2017, 9, 43902−43909
[61] W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu, D. S. Ginger, amd A. K.Y. Jen, “Two-dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency,” ACS Energy Lett., 2018, 3, 2086−2093
[62] X. Lian, J. Chen, R. Fu, T.K. Lau, Y. Zhang, G. Wu, X. Lu, Y. Fang, De. Yangc, amd H. Chen, “An Inverted Planar Solar Cell with 13% Efficiency and a Sensitive Visible Light Detector Based on Orientation Regulated 2D Perovskites,” J. Mater. Chem. A, 2018, 6, 24633–24640
[63] L. Ke, X. Gan, W. Zhao, L. Guo, and H. Liu, “(C6H5C2H4NH3)2FAn-1PbnI3n-1: A Quasi Two-dimensional Perovskite with High Performance Produced via Two-step Solution Method,” Journal of Alloys and Compounds 788 (2019) 954-960
[64] L. Hu, M. Li, K. Yang, Z. Xiong, B. Yang, M. Wang, X. Tang, Z. Zang, X. Liu, B. Li, Z. Xiao, S. Lu, H. Gong, J. Ouyang, and K. Sun, “PEDOT:PSS Monolayers to Enhance The Hole Extraction and Stability of Perovskite Solar Cells,” J. Mater. Chem. A, 2018, 6,16583
[65] W. Chen, Y. Wua, B. Tu, F. Liu, A. B. Djurišic´, and Z. He, “Inverted Planar Organic-inorganic Hybrid Perovskite Solar Cells with NiOx Hole-transport Layers as Light-in Window,” Applied Surface Science 451 (2018) 325–332
[66] P. L. Qin, Q. He, C. Chen, X.L. Zheng, G. Yang, H. Tao, L.B. Xiong, L. Xiong, G. Li, and G.J. Fang, “High-performance Rigid and Flexible Perovskite Solar Cells with Low-temperature Solution-processable Binary Metal Oxide Hole-transporting Materials,” Sol. RRL 2017, 1, 1700058.
[67] L.H. Chou, X.F. Wang, I. Osaka, C.-G. Wu, and C.L. Liu, “Scalable Ultrasonic Spray-processing Technique for Manufacturing Large-area CH3NH3PbI3 Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 2018, 10, 38042−38050
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw