進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707202014083100
論文名稱(中文) 合成不同構型之中孔洞氧化矽材料在智慧型玻璃窗應用之研究
論文名稱(英文) Synthesis of Mesoporous Silica with Different Morphologies for Application in Smart Window
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生(中文) 李佩蓁
研究生(英文) Pei-Jhen Li
學號 L36074045
學位類別 碩士
語文別 中文
論文頁數 122頁
口試委員 指導教授-林弘萍
口試委員-羅光耀
口試委員-賴重光
口試委員-許君漢
中文關鍵字 中孔洞氧化矽  向列型液晶5CB  智慧型玻璃窗  模板法 
英文關鍵字 Mesoporous silica  Smart window  5CB liquid crystal  Template method 
學科別分類
中文摘要 本論文研究主旨在於,利用低成本且簡便的方法合成不同構型的中孔洞氧化矽材料,由於中孔洞氧化矽有高比表面積、低體密度及不同孔洞性質,是可以廣泛被應用的材料,因此適合用來作為做為液晶顯示器的添加材,並應用於智慧玻璃窗。
本研究嘗試以PMMA球、SiO2球及nano-CaCO3作為硬模板來合成不同構型的中孔洞氧化矽,利用表面活化法將硬模板球表面活化後,分別使用矽酸鈉及四乙氧基矽烷(TEOS)作為氧化矽源,有效的將模板包覆一層氧化矽球殼,再以鍛燒或酸洗的方法移除模板和表面活化劑後,可成功合成出不同孔洞性質及不同構型之中孔洞氧化矽。以PMMA球為模板,在適當的pH值下與兩種氧化矽源反應,皆可得到中孔洞氧化矽空心球(HSMS),以100°C水熱處理的HSMS結構穩定且孔徑較大。此外,以SiO2球為模板在適當的比例下反應,可得到中孔洞氧化矽實心球(SiO2@MS),並探討改變氧化矽源種類、表面活化劑種類(如:gelatin、非離子型界面活性劑、PEG11000等)及氧化矽塗佈的次數,對SiO2@MS孔洞性質的影響。而以nano-CaCO3為模板,在適當的pH值下與矽酸鈉反應則可合成出有大孔洞的中孔洞氧化矽(LMS),藉由改變nano-CaCO3對矽酸鈉重量比,可調控LMS的比表面積及體密度;嘗試利用不同氧化矽源,亦可合成出高比表面積的LMS。另外,本研究也利用14個碳的陽離子型界面活性劑(C14TABr)和助界面活性劑(丁醇)在特定比例下,和矽酸鈉混合攪拌後,合成出有球中柱及MCM41結構的中孔洞氧化矽球(PWS-MS)。探討酸化速率、總水量、丁醇/C14TABr莫耳比及矽酸鈉添加量對PWS-MS構型的影響,並尋找最佳的合成條件。
由於上述合成出不同構型之中孔洞氧化矽材料(HSMS、SiO2@MS、LMS、PWS-MS)具有高表面積、低體密度及適當的孔徑大小,藉由三甲基氯矽烷進行疏水性官能基修飾後,可與向列型液晶(5CB)均勻混合,形成液晶-氧化矽的混合相,再將其封裝成智慧玻璃窗,探討氧化矽構型、體密度大小及孔洞性質改變對智慧玻璃窗光學性質及散射效應之影響。除了添加材體密度大小及孔洞性質會影響智慧玻璃窗的效能,材料表面疏水性修飾及有無孔洞存在亦是重要因素,有修飾疏水性官能基或有足夠的孔洞率的氧化矽材料可增加液晶-氧化矽的混合溶液的均勻度,也提高添加材在智慧玻璃窗中的分散度,智慧玻璃窗在放置長時間後仍可保有良好的效能。孔洞氧化矽材料會擾亂液晶分子的排列並形成許多散射區塊,使智慧玻璃窗散射光線並呈現霧態,通入電場後液晶分子整齊排列呈現透明態,因此使用不同構型之氧化矽材料可製備出利用電場控制明暗度變化之智慧玻璃窗,具有應用於綠色建材之潛力。
英文摘要 Mesoporous silica has many favorable properties, including a high specific surface area, a tunable pore size, a low bulk density, and a controllable morphology. It is thus used in many applications nowadays. Mesoporous silica is most commonly prepared using surface-activation or surfactant-templating methods. In the present study, mesoporous silica with a tunable pore size in the range of 2.5 to 5.0 nm and different morphologies were successfully prepared by using PMMA beads, SiO2 beads and nano CaCO3 as hard templates, gelatin and AEO-L67 as surface activation reagents, and Tetraethyl orthosilicate (TEOS) and sodium silicate as silica sources. Following silicification on the activated hard templates, mesoporous silica with a hollow interior was obtained via calcination at 500°C or acid-washing to remove the hard template and surface activation reagent. In addition, pillar-within-sphere mesoporous silica with an MCM-41 structure was synthesized using cationic surfactant (C14TABr) and cosurfactant (butanol) as templates, and sodium silicate as the silica source. The pore size and surface properties of the mesoporous silica were tuned through a careful control of the reaction conditions (e.g., the acidification rate, the hydrothermal temperature and the molar ratio of the surfactant mixture). The results showed that the synthesized mesoporous silica had a high surface area of ~1200 m2/g and a tunable pore size in the range of 2.0 to 3.0 nm. The mesoporous silicas with different morphologies were hydrophobically modified with chlorotrimethylsilane and then dispersed in nematic liquid crystal to form smart windows. The electro-optic characterization results showed that the addition of mesoporous silica with modified hydrophobic functional groups and sufficient pores enhanced the uniformity of the liquid crystal-silica mixture and improved the transparency of the liquid crystal under the application of an external driving field. Moreover, the mesoporous silica prolonged the transparency state of the smart window following the removal of the external voltage. The resulting smart windows therefore have significant potential as a green building material.
論文目次 第一章、緒論 1
1.1 中孔洞材料 1
1.1.1 中孔洞二氧化矽 1
1.1.2 氧化矽空心球材料的發展與應用 3
1.1.3 空心狀材料的合成 4
1.2 界面活性劑 7
1.2.1 界面活性劑之基本性質 7
1.2.2 界面活性劑之種類 7
1.2.3 明膠(Gelatin) 8
1.2.4 脂肪醇聚氧乙烯醚(Fatty Alcohol Ethoxylates, AEO) 9
1.2.5 Pluronic® Block Copolymers 9
1.2.6 微胞的形成 10
1.3 氧化矽源的介紹 12
1.3.1 矽酸鈉(Sodium Silicate, S.S) 12
1.3.2 四乙氧基矽烷(Tetraethyl Orthosilicate, TEOS) 14
1.4 表面修飾有機官能基 17
1.5 液晶基本介紹 18
1.5.1 液晶的光電性質 18
1.5.2 液晶顯示器(LCD)的介紹 20
1.5.3 智慧型玻璃窗(Smart Window)的介紹 21
1.6 研究動機與目的 22
第二章、實驗部分 23
2.1 化學藥品 23
2.2 中孔洞氧化矽材料之合成步驟 24
2.2.1 以PMMA球為硬模板合成中孔洞氧化矽空心球材料(HSMS) 24
2.2.2 以SiO2球為硬模板合成中孔洞氧化矽實心球材料 26
2.2.3 以nano-CaCO3為硬模板合成大孔/中孔洞氧化矽材料(LMS) 27
2.2.4 球中柱結構(Pillar-Within-Sphere, PWS)中孔洞氧化矽的合成 28
2.3 智慧型玻璃窗的製作 29
2.3.1 中孔洞氧化矽材料的疏水性修飾 29
2.3.2 智慧玻璃窗的製作 30
2.4 儀器鑑定分析 31
2.4.1 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 31
2.4.2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 31
2.4.3 氮氣等溫吸附/脫附測量 (N2 Adsorption-Desorption Isotherm) 32
2.4.4 熱重分析儀 (Thermogravimetry Analysis, TGA) 36
2.4.5 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer, FT-IR) 37
2.4.6 穿透率測量 (Transmission Measurement) 38
第三章、不同構型的中孔洞氧化矽之合成研究 39
3.1 研究動機與目的 39
3.2 以PMMA球為模板合成中孔洞氧化矽空心球材料 40
3.2.1 gelatin添加量 41
3.2.2 水熱反應對材料孔洞結構的影響 42
3.2.3 氧化矽源對產物的影響 43
3.3 以SiO2球為模板合成中孔洞氧化矽實心球材料 45
3.3.1 不同尺度之SiO2球適當的gelatin添加量 45
3.3.2 模板鍛燒對產物孔洞結構的影響 47
3.3.3 使用不同界面活性劑作為表面活化劑 49
3.3.4 改變氧化矽源對產物的影響 52
3.3.5 氧化矽源coating次數對產物的影響 53
3.4 以nano-CaCO3為硬模板合成大孔-中孔洞氧化矽材料 57
3.4.1 探討不同合成方法對產物型態的影響 57
3.4.2 探討反應pH值對產物型態的影響 58
3.4.3 CaCO3和矽酸鈉重量比的改變 60
3.4.4 水熱對產物型態及孔洞結構的影響 62
3.4.5 改變氧化矽源對產物的影響 64
3.4.6 有無界面活性劑的差異 65
3.5 合成球中柱結構(Pillar-Within-Sphere, PWS)的中孔洞氧化矽材料 67
3.5.1 改變硫酸滴入的速度(控制酸化速率)對產物型態的影響 68
3.5.2 改變反應總水量 69
3.5.3 探討矽酸鈉添加量對產物的影響 70
3.5.4 丁醇的添加量對產物大小的影響 71
3.5.5 不同水熱溫度及時間對產物的影響 72
3.5.6 使用不同鏈長的陽離子型界面活性劑作為模板 74
第四章、中孔洞氧化矽材料混合液晶應用於智慧型玻璃窗 75
4.1 研究目的及動機 75
4.2 材料表面疏水性修飾的重要性 76
4.3 孔洞材料混入液晶顯示器的性質研究 79
4.4 以中孔洞氧化矽空心球做為添加材應用於液晶顯示器 82
4.4.1 添加材比例的影響 82
4.4.2 添加材混合方式的影響 83
4.4.3 混入不同氧化矽源合成的氧化矽空心球 85
4.5 以中孔洞氧化矽實心球做為添加材應用於液晶顯示器 88
4.5.1 添加材比例的影響 88
4.5.2 混入不同氧化矽源合成的氧化矽實心球 89
4.5.3 孔洞氧化矽coating次數的影響 92
4.6 以大孔/中孔洞氧化矽做為添加材應用於液晶顯示器 97
4.6.1 添加材比例的影響 97
4.6.2 混入不同CaCO3和矽酸鈉重量比合成的大孔/中孔洞氧化矽材料 98
4.6.3 混入不同氧化矽源合成的大孔-中孔洞氧化矽 101
4.7 以球中柱結構之中孔洞氧化矽做為添加材應用於液晶顯示器 103
4.7.1 添加材比例的影響 103
4.7.2 添加材孔洞大小的影響 105
4.7.3 表面疏水性修飾方式的影響 107
4.8 探討不同構型之中孔洞氧化矽應用於液晶顯示器的影響 110
第五章、結論 114
參考文獻 117
參考文獻 1. Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843.
2. Hoffmann, F., et al., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 2006. 45(20): p. 3216-3251.
3. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359(6397): p. 710-712.
4. Wu, C.-G. and T. Bein, Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 1994. 264(5166): p. 1757.
5. Wu, C.-G. and T. Bein, Conducting Carbon Wires in Ordered, Nanometer-Sized Channels. Science, 1994. 266(5187): p. 1013.
6. Lee, Y.S., D. Surjadi, and J.F. Rathman, Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates. Langmuir, 1996. 12(26): p. 6202-6210.
7. Wang, W., et al., Synthesis of Periodic Mesoporous Ethylenesilica under Acidic Conditions. Chemistry of Materials, 2004. 16(9): p. 1756-1762.
8. Fan, J., et al., Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angewandte Chemie International Edition, 2003. 42(27): p. 3146-3150.
9. Vinu, A., V. Murugesan, and M. Hartmann, Pore Size Engineering and Mechanical Stability of the Cubic Mesoporous Molecular Sieve SBA-1. Chemistry of Materials, 2003. 15(6): p. 1385-1393.
10. Lin, H.-P., C.-Y. Tang, and C.-Y. Lin, Detailed Structural Characterizations of SBA-15 and MCM-41 Mesoporous Silicas on a High-Resolution Transmission Electron Microscope. Journal of the Chinese Chemical Society, 2002. 49(6): p. 981-988.
11. Alfredsson, V. and M.W. Anderson, Structure of MCM-48 Revealed by Transmission Electron Microscopy. Chemistry of Materials, 1996. 8(5): p. 1141-1146.
12. Lin, H.-P. and C.-Y. Mou, Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research, 2002. 35(11): p. 927-935.
13. Kim, J.M., et al., Structural Design of Mesoporous Silica by Micelle-Packing Control Using Blends of Amphiphilic Block Copolymers. The Journal of Physical Chemistry B, 2002. 106(10): p. 2552-2558.
14. Farid, G. and M. Kruk, Silica Nanotubes with Widely Adjustable Inner Diameter and Ordered Silicas with Ultralarge Cylindrical Mesopores Templated by Swollen Micelles of Mixed Pluronic Triblock Copolymers. Chemistry of Materials, 2017. 29(11): p. 4675-4681.
15. Newalkar, B.L., J. Olanrewaju, and S. Komarneni, Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwave−Hydrothermal Conditions. Chemistry of Materials, 2001. 13(2): p. 552-557.
16. Bhaumik, A. and S. Inagaki, Mesoporous Titanium Phosphate Molecular Sieves with Ion-Exchange Capacity. Journal of the American Chemical Society, 2001. 123(4): p. 691-696.
17. Zhang, Z., et al., Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure. Angewandte Chemie International Edition, 2001. 40(7): p. 1258-1262.
18. Walcarius, A., M. Etienne, and B. Lebeau, Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups. Chemistry of Materials, 2003. 15(11): p. 2161-2173.
19. Yokoi, T., H. Yoshitake, and T. Tatsumi, Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry, 2004. 14(6): p. 951-957.
20. Tian, Z.R., et al., Hierarchical and Self-Similar Growth of Self-Assembled Crystals. Angewandte Chemie International Edition, 2003. 42(4): p. 413-417.
21. Zhong, Z., et al., Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Advanced Materials, 2000. 12(3): p. 206-209.
22. Kim, S.-W., et al., Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. Journal of the American Chemical Society, 2002. 124(26): p. 7642-7643.
23. Trewyn, B.G., et al., Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 2007. 40(9): p. 846-853.
24. Rahman, Z.U., et al., Preparation of hollow mesoporous silica nanospheres: controllable template synthesis and their application in drug delivery. New Journal of Chemistry, 2017. 41(23): p. 14122-14129.
25. Wu, S.-H., C.-Y. Mou, and H.-P. Lin, Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013. 42(9): p. 3862-3875.
26. Cheow, W.S., S. Li, and K. Hadinoto, Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chemical Engineering Research and Design, 2010. 88(5): p. 673-685.
27. Kato, T., et al., Preparation of Hollow Alumina Microspheres by Ultrasonic Spray Pyrolysis. Journal of the Ceramic Society of Japan, 2002. 110(1279): p. 146-148.
28. Zeng, H., Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials. Current Nanoscience, 2007. 3: p. 177-181.
29. Kawahashi, N. and E. Matijevic´, Preparation of hollow spherical particles of yttrium compounds. Journal of Colloid and Interface Science, 1991. 143(1): p. 103-110.
30. Caruso, F., R.A. Caruso, and H. Möhwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998. 282(5391): p. 1111.
31. Xu, X. and S.A. Asher, Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals. Journal of the American Chemical Society, 2004. 126(25): p. 7940-7945.
32. Guan, G., et al., Single-Hole Hollow Polymer Microspheres toward Specific High-Capacity Uptake of Target Species. Advanced Materials, 2007. 19(17): p. 2370-2374.
33. Lou, X.W., L.A. Archer, and Z. Yang, Hollow Micro-/Nanostructures: Synthesis and Applications. Advanced Materials, 2008. 20(21): p. 3987-4019.
34. Nakashima, Y., et al., Control size distribution of hollow silica nanoparticles by viscosity of emulsion template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 507: p. 164-169.
35. Zhou, G., et al., From cylindrical-channel mesoporous silica to vesicle-like silica with well-defined multilamella shells and large inter-shell mesopores. Journal of Materials Chemistry, 2007. 17(27): p. 2839-2844.
36. Lecren, L., T. Toupance, and R. Backov, Synthesis and characterization of multi-wall silica nanospheres. Materials Letters, 2005. 59(7): p. 817-820.
37. Feng, Z., et al., A facile route to hollow nanospheres of mesoporous silica with tunable size. Chemical Communications, 2008(23): p. 2629-2631.
38. Teng, Z., et al., Preparation of hollow mesoporous silica spheres by a sol–gel/emulsion approach. Microporous and Mesoporous Materials, 2010. 127(1): p. 67-72.
39. Liu, J., et al., A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010. 20(22): p. 4595-4601.
40. Liu, X., et al., Organosilica nanotubes: large-scale synthesis and encapsulation of metal nanoparticles. Chemical Communications, 2011. 47(28): p. 8073-8075.
41. Schmidt-Winkel, P., C.J. Glinka, and G.D. Stucky, Microemulsion Templates for Mesoporous Silica. Langmuir, 2000. 16(2): p. 356-361.
42. Lin, H.-P., Y.-R. Cheng, and C.-Y. Mou, Hierarchical Order in Hollow Spheres of Mesoporous Silicates. Chemistry of Materials, 1998. 10(12): p. 3772-3776.
43. Lin, H.-P., et al., Hollow spheres of MCM-41 aluminosilicate with pinholes. Chemical Communications, 2001(19): p. 1970-1971.
44. Mann, S., The Chemistry of Form. Angewandte Chemie International Edition, 2000. 39(19): p. 3392-3406.
45. Vrieling, E.G., et al., Mesophases of (Bio)Polymer–Silica Particles Inspire a Model for Silica Biomineralization in Diatoms. Angewandte Chemie International Edition, 2002. 41(9): p. 1543-1546.
46. Dominguez, A., et al., Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. Journal of Chemical Education, 1997. 74(10): p. 1227.
47. Tadros, T.F., Surfactants. Surfactants, 1984.
48. Schrieber, R. and H. Gareis, Gelatine Handbook: Theory and Industrial Practice. 2007: p. I-XII.
49. Edlich, R.F., et al., The molecular basis for toxicity of surfactants in surgical wounds: 1. EO:PO Block Polymers. Journal of Surgical Research, 1973. 14(4): p. 277-284.
50. Ritacco, H., et al., Influence of the polymer backbone rigidity on polyelectrolyte–surfactant complexes at the air/water interface. Physical Chemistry Chemical Physics, 2000. 2(22): p. 5243-5251.
51. Chang, C.Y., et al., A Simple Method for Determining the Critical Micellar Concentration of a Surfactant. Journal of the Chinese Chemical Society, 1987. 34(3): p. 243-246.
52. Amos, D.A., et al., Osmotic Pressure and Interparticle Interactions in Ionic Micellar Surfactant Solutions. The Journal of Physical Chemistry B, 1998. 102(15): p. 2739-2753.
53. Al-Soufi, W., L. Piñeiro, and M. Novo, A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data. Journal of Colloid and Interface Science, 2012. 370(1): p. 102-110.
54. Kopecký, F., et al., Hydrophobicity and critical micelle concentration of some quaternary ammonium salts with one or two hydrophobic tails. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 2007. 54: p. 84-94.
55. Porter, M.R., Handbook of Surfactants. 1994.
56. Mitchell, D.J. and B.W. Ninham, Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1981. 77(4): p. 601-629.
57. Israelachvili, J.N., S. Marčelja, and R.G. Horn, Physical principles of membrane organization. Quarterly Reviews of Biophysics, 1980. 13(2): p. 121-200.
58. Dutt, S., P.F. Siril, and S. Remita, Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC Advances, 2017. 7(10): p. 5733-5750.
59. Giannelis, E.P., R. Krishnamoorti, and E. Manias, Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes, in Polymers in Confined Environments, S. Granick, et al., Editors. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 107-147.
60. Aelion, R., A. Loebel, and F. Eirich, Hydrolysis of Ethyl Silicate*. Journal of the American Chemical Society, 1950. 72(12): p. 5705-5712.
61. 廖文家, 壓克力/二氧化矽混成材料的製備與性質研究. 中原大學化學所, 2004.
62. 鄭舜宇, 以溶膠-凝膠法合成高分子基氧化矽複合材料之研究. 中山大學材料科學所, 2001.
63. Wu, G., et al., Adsorption of Dyes on Nanosize Modified Silica Particles. Journal of Colloid and Interface Science, 1997. 195(1): p. 222-228.
64. Jal, P.K., S. Patel, and B.K. Mishra, Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta, 2004. 62(5): p. 1005-1028.
65. 張家勝, 硬模板法合成中孔洞氧化矽空心球在液晶顯示器之應用. 成功大學化學所, 2012.
66. Reinitzer, F., Beiträge zur Kenntniss des Cholesterins. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1888. 9(1): p. 421-441.
67. Lehmann, O., Über fliessende Krystalle. Zeitschrift für Physikalische Chemie, 1889. 4U(1): p. 462-472.
68. Park, W.Y., A. Phadke, and N. Shah, Efficiency improvement opportunities for personal computer monitors: Implications for market transformation programs. Energy Efficiency, 2013. 6.
69. Lovinger, A.J., K.R. Amundson, and D.D. Davis, Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials. Chemistry of Materials, 1994. 6(10): p. 1726-1736.
70. Baetens, R., B.P. Jelle, and A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 2010. 94(2): p. 87-105.
71. Mouquinho, A., et al., New Polymer Networks for PDLC Films Application. 2012. p. 139-164.
72. Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985. 57(4): p. 603-619.
73. Glushchenko, A., et al., Memory effect in filled nematic liquid crystals. Liquid Crystals, 1997. 23(2): p. 241-246.
74. Bao, Y., et al., Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane. Scientific Reports, 2017. 7(1): p. 46638.
75. Wang, J., et al., Hollow mesoporous silica spheres synthesized with cationic and anionic mixed surfactant as templates. Materials Letters, 2015. 142: p. 269-272.
76. 林勺乃, 以表面活化法合成氧化矽空心球及核-殼結構奈米粒子. 成功大學化學所, 2015.
77. Fuji, M., et al., Shape-controlled hollow silica nanoparticles synthesized by an inorganic particle template method. Advanced Powder Technology, 2012. 23(5): p. 562-565.
78. Langner, J., et al., Anthropogenic influence on the distribution of tropospheric sulphate aerosol. Nature, 1992. 359(6397): p. 712-716.
79. Dapurkar, S.E., S.K. Badamali, and P. Selvam, Nanosized metal oxides in the mesopores of MCM-41 and MCM-48 silicates. Catalysis Today, 2001. 68(1): p. 63-68.
80. Chung-Yuan, M. and L. Hong-Ping, Control of morphology in synthesizing mesoporous silica. Pure and Applied Chemistry, 2000. 72(1-2): p. 137-146.
81. 林莉婕, 以中孔洞氧化矽空心球材料混合向列型液晶製備具有記憶效應之智慧玻璃窗. 成功大學化學所, 2017.
82. Castellón, E., M. Zayat, and D. Levy, Molecular configuration transitions of a nematic liquid crystal encapsulated in organically modified silicas. Physical Chemistry Chemical Physics, 2009. 11(29): p. 6234-6241.
83. Tkachenko, V., et al., Nematic Liquid Crystal Optical Dispersion in the Visible-Near Infrared Range. Molecular Crystals and Liquid Crystals, 2006. 454: p. 263/[665]-271/[673].
84. Lin, H.-P., et al., Reducing Surfactants–Silica Interactions for High-Coverage Silane-Modification of MCM-41 and MCM-48 Silicas. Chemistry Letters - CHEM LETT, 2002: p. 566-566.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw