進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707202013171200
論文名稱(中文) 以無機廢棄物製備兼具調濕及室內甲醛降解塗料
論文名稱(英文) Preparation of humidity control and formaldehyde degradable indoor coating
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 温宛榆
研究生(英文) Wan-Yu Wen
學號 P56074092
學位類別 碩士
語文別 英文
論文頁數 108頁
口試委員 指導教授-劉守恒
口試委員-朱信
口試委員-黃武章
口試委員-魏玉麟
中文關鍵字 無機廢棄物  濕度控制  塗料  甲醛  光觸媒 
英文關鍵字 Inorganic waste  humidity control  coating  formaldehyde  photocatalyst 
學科別分類
中文摘要 隨著科技的發達,人們待在房間、辦公室、教室的時間超過80 %,導致室內空氣淨化與溼度調整的議題備受關注。根據統計顯示,甲醛是最常見的室內空氣污染物,其來源主要是家具.木製層板、黏著劑、油漆等裝潢材料。若長期暴露於低劑量甲醛,會對人體健康帶來危害,甚至是癌症。除此之外,在海島型氣候的台灣,年平均濕度高達75%以上,進而導致黴菌的孳生及呼吸道疾病等問題產生。因此,為了追求更佳的室內生活品質,室內相對濕度的控制及空氣污染物的降解皆被視為一大考量。本研究的目標是以廢棄物循環利用製備多功能綠建材塗料。主要針對無機污泥(ESF)及石油煉化裂解廢觸媒(sFCCC)兩種廢棄物進行再利用。ESF (Enhancement Silica Fume)主要是傳統產業的製程廢棄物,以非晶型二氧化矽組成,其主要為中孔結構;sFCCC具有高比表面積、微孔多,且以Y型沸石結構作為主體。本研究透過廢棄物作為吸附載體,自製之光觸媒作為空氣淨化的功能材,並搭配石膏、白煙、高嶺土等原料製成具有中孔(2 nm~50 nm)結構的多功能綠建材塗料,藉由將甲醛吸附於塗料表層並進行光降解,最後,將最佳樣品與目前市售的商業塗料進行性能比較。研究結果顯示,最佳的多功能塗料樣品於中濕度進行吸放濕性能測試(日本工業標準規範JIS-1470-1),其調濕效能可達29.20 g/m2,優於市售塗料2~5倍;在模擬室內環境,於可見光降解甲醛測試中,其降解效率為73.40 %,反應速率k為1.63*10-3 min-1,淨化空氣能力高於市售塗料兩倍。本研究的綠建材塗料能為居住空間帶來更舒適且健康的環境品質,同時將廢棄物轉化成高價值的材料,符合資源循環的理念。
英文摘要 With the development of science and technology, people spend more than 80% of their time indoors, which has attracted much attention toward the indoor air purification and humidity control ability. According to statistics, formaldehyde (HCHO) is the most common indoor air pollutant, and prolonged exposure to low-dose formaldehyde may cause many adverse health effects. In addition, in the island-type climate of Taiwan, the average annual humidity is up to more than 75%, which leads to problems such as the growth of mold and respiratory diseases. Therefore, in order to pursue a better indoor quality of life, the control of relative humidity and the degradation of formaldehyde are regarded as a major consideration. This research is based on the basic concept of waste recycling, i.e., mainly using two kinds of inorganic wastes. The enhancement silica fume (ESF) is mainly a process waste of traditional industries, which has a mesopore structure; and the other is spent fluid catalytic cracking catalysts (sFCCC), which has a high specific surface area, and is mainly composed of Y-type zeolite structure. In this study, waste is used as a moisture adsorption-desorption carrier, and the prepared photocatalyst is used as a functional material for air purification. The different ratios of filler, functional materials, binders are used to prepare a coating. The results of the study show that the humidity control capacity of the best sample reaches 29.20 g/m2 (JIS-1470-1), while the photodegradation efficiency of formaldehyde under visible light is 73.40%, both of which were better than commercial coatings. This shows that the multifunctional coatings in this study can offer a possibility to create a more comfortable and healthy environmental quality to the living space. More importantly, valorization of the inorganic wastes into multifunctional coatings, which is in line with the concept of circular economy.
論文目次 摘要 I
ABSTRACT II
CONTENT III
LIST OF TABLES VII
LIST OF FIGURES VIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives 2
Chapter 2 Literatures review 3
2.1 Inorganic sludge 3
2.1.1 Status and reuse of inorganic sludge 3
2.1.2 Characteristics and production process of ESF 7
2.1.3 Spent fluid catalytic cracking catalyst 8
2.2 Photocatalytic degradation of indoor air pollutants 9
2.2.1 Indoor air pollutants-formaldehyde (HCHO) 9
2.2.2 Principle and definition of photocatalyst 11
2.2.3 Photocatalytic degradation of formaldehyde 12
2.3 Humidity control 16
2.3.1 Relative humidity 16
2.3.2 Influence of indoor relative humidity 17
2.3.3 Theory of humidity control 19
2.3.4 Adsorption isotherms and Hysteresis loops 20
2.3.5 Humidity control material (HCM) 23
2.4 Interior coating 26
2.4.1 Composition of coating 26
2.4.2 The type of coating 30
Chapter 3 Experimental methods 31
3.1 Experimental procedures 31
3.2 Raw material preparation of coatings 32
3.2.1 Chemicals 32
3.2.2 Pretreatment of inorganic wastes 32
3.2.3 Photocatalyst preparation 34
3.2.4 Parameter design of humidity control coating 35
3.2.5 Coating sample preparation 36
3.2.6 Experimental reactor for photo-degradation 36
3.3 Humidity control tests 37
3.3.1 JIS-A 6909-7.29 38
3.3.2 JIS-A 1470-1 38
3.3.3 Hygroscopic sorption properties (JIS-A 1475) 40
3.4 Characterization and Analysis 41
3.4.1 Scanning Electron Microscope (SEM) 42
3.4.2 X-ray Diffraction (XRD) 42
3.4.3 X-ray fluorescence spectrometer (XRF) 42
3.4.4 N2 adsorption-desorption measurement 43
3.4.5 Diffuse Reflectance Ultraviolet/Visible spectra (UV-vis) 43
3.4.6 Toxicity characteristic leaching procedure (TCLP) test 43
3.4.7 Mechanical property test 44
3.4.8 Surface properties of humidity control coatings 44
Chapter 4 Results and discussion 46
4.1 Characteristics of raw materials and photocatalysts 46
4.1.1 Chemical compositions 46
4.1.2 Crystal structure 49
4.1.3 Particle size distribution 51
4.1.4 Surface morphology 53
4.1.5 Characteristics of porous structure 54
4.1.6 Photocatalysts 56
4.2 Performance of the prepared coatings 59
4.2.1 Photoegradation of formaldehyde in batch-system 60
4.2.2 Humidity control performances 65
4.2.3 Pore structure of coatings 71
4.3 Improved humidity control performance of coatings 79
4.3.1 The effects of sFCCC on humidity control performance 80
4.3.2 Moisture adsorption-desorption capacity tests 82
4.3.3 Photodegradation of formaldehyde in a batch-system 85
4.3.4 Cyclic tests of M-0.5/0.5-4% coatings. 87
4.4 Comparisons of prepared coatings with commercial coatings 88
4.4.1 Main components of commercial coatings 88
4.4.2 Photodegradation of formaldehyde in a simulated indoor environment 90
4.4.3 Moisture adsorption-desorption capacity tests 92
4.4.4 N2 adsorption-desorption measurements 95
4.4.5 UV–vis analysis 97
4.4.6 Mechanical properties of multifunctional coatings 99
4.4.7 Environmental compatibility of prepared coatings 100
Chapter 5 Conclusions 101
References 102

參考文獻 Ai, Z., Huang, Y., Lee, S., & Zhang, L. (2011). Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509(5), 2044-2049.

Ai, Z., Lee, S., Huang, Y., Ho, W., & Zhang, L. (2010). Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification. J Hazard Mater, 179(1-3), 141-150.

Akcil, A., Veglio, F., Ferella, F., Okudan, M. D., & Tuncuk, A. (2015). A review of metal recovery from spent petroleum catalysts and ash. Waste Manag, 45, 420-433.

Alothman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902.

Alsmo, T., & Alsmo, C. (2016). A Comparison of Relative Humidity between Two Swedish Buildings with Different Ventilation Solutions. Journal of Environmental Protection, 07(06), 855-873.

Baughman, A., & Arens, E. A. (1996). Indoor Humidity and Human Health--Part I: Literature Review of Health Effects of HumidityInfluenced Indoor Pollutants. ASHRAE Transactions, 102 Part 1.

Biswas, A., Chakraborty, A., & Jana, N. R. (2018). Nitrogen and Fluorine Codoped, Colloidal TiO2 Nanoparticle: Tunable Doping, Large Red-Shifted Band Edge, Visible Light Induced Photocatalysis, and Cell Death. ACS Appl Mater Interfaces, 10(2), 1976-1986.

Busca, G., Riani, P., Garbarino, G., Ziemacki, G., Gambino, L., Montanari, E., & Millini, R. (2014). The state of nickel in spent Fluid Catalytic Cracking catalysts. Applied Catalysis A: General, 486, 176-186.

Chang, S. S., Clair, B., Ruelle, J., Beauchene, J., Di Renzo, F., Quignard, F., . . . Gril, J. (2009). Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot, 60(11), 3023-3030.

Cheng, X., Yu, X., Xing, Z., & Yang, L. (2016). Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity. Arabian Journal of Chemistry, 9, S1706-S1711.

Clark, M. D. T., & Wansbrough, H. X-Polymers-D-Paints and Pigments.

Cordero, T., Chovelon, J.-M., Duchamp, C., Ferronato, C., & Matos, J. (2007). Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons. Applied Catalysis B: Environmental, 73(3-4), 227-235.

Da, Y., He, T., Wang, M., Shi, C., Xu, R., & Yang, R. (2020). The effect of spent petroleum catalyst powders on the multiple properties in blended cement. Construction and Building Materials, 231.

Dannemiller, K. C., Weschler, C. J., & Peccia, J. (2017). Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air, 27(2), 354-363.

Emy Marlina Samsudin, Sze Nee Goh, Ta Yeong Wu, Tan Tong Ling, Hamid, S. B. A., & Juan, J. C. (2015). Evaluation on the Photocatalytic Degradation Activity of Reactive Blue 4 using Pure Anatase Nano-TiO2. Sains Malaysiana, 1011–1019.

Friedenson, B. (2011). Inherited mutations impair responses to environmental carcinogens: Cancer prevention in mutation carriers. Nature Precedings.

Giridhar, G., Manepalli, R. K. N. R., & Apparao, G. (2017). Contact Angle Measurement Techniques for Nanomaterials. In Thermal and Rheological Measurement Techniques for Nanomaterials Characterization (pp. 173-195).

Guo, H., Kwok, N. H., Cheng, H. R., Lee, S. C., Hung, W. T., & Li, Y. S. (2009). Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors. Indoor Air, 19(3), 206-217.

Hamidi, F., & Aslani, F. (2019). TiO2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. Nanomaterials, 9(10).

Han, Z., Chang, V.-W., Wang, X., Lim, T.-T., & Hildemann, L. (2013). Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chemical Engineering Journal, 218, 9-18.

Han, Z., Chang, V. W. C., Zhang, L., Tse, M. S., Tan, O. K., & Hildemann, L. M. (2012). Preparation of TiO2-Coated Polyester Fiber Filter by Spray-Coating and Its Photocatalytic Degradation of Gaseous Formaldehyde. Aerosol and Air Quality Research, 12(6), 1327-1335.

Hao, R., Wang, G., Tang, H., Sun, L., Xu, C., & Han, D. (2016). Template-free preparation of macro/mesoporous g-C 3 N 4 /TiO 2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 187, 47-58.

Hu, Z., Zheng, S., Sun, Z., Chen, Y., & Yan, Y. (2017). Influence of pore structure on humidity control performance of diatomite. Science and Technology for the Built Environment, 23(8), 1305-1313.

Hu, Z., Zheng, S., Tan, Y., & Jia, M. (2017). Preparation and characterization of diatomite/silica composite humidity control material by partial alkali dissolution. Materials Letters, 196, 234-237.

Huang, Y., Ho, S. S., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016). Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 21(1), 56.

Jesionowski, T., & Ciesielczyk, F. (2013). Pigment, Inorganic. In Encyclopedia of Color Science and Technology (pp. 1-21).

Jiao, W., Wu, X., Li, G., Xue, T., Wang, Y., & Tang, Y. (2017). Core-Shell Zeolite Y@γ-Al2O3 Nanorod Composites: Optimized Fluid Catalytic Cracking Catalyst Assembly for Processing Heavy Oil. ChemCatChem, 9(13), 2574-2583.

Jing, Y., Jing, Z., & Ishida, E. H. (2013). Relationship between Porous and Mechanical Properties of Hydrothermally Synthesized Porous Materials from Diatomaceous Earth. Industrial & Engineering Chemistry Research, 52(50), 17865-17870.

Kojima, Y., & Yasue, T. (2006). Synthesis of large plate-like gypsum dihydrate from waste gypsum board. Journal of the European Ceramic Society, 26(4-5), 777-783.

Kumar, A. (2017). A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Material Science & Engineering International Journal, 1(3).

Le, T., Wang, Q., Ravindra, A. V., Li, X., & Ju, S. (2019). Microwave intensified synthesis of Zeolite-Y from spent FCC catalyst after acid activation. Journal of Alloys and Compounds, 776, 437-446.

Lee, H., Hanif, A., Usman, M., Sim, J., & Oh, H. (2018). Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. Journal of Cleaner Production, 170, 683-693.

Lee, J.-K., & Kim, T.-Y. (2018). Evaluation of Humidity Control Ceramic Paint Using Gypsum Binder. Journal of the Korean Ceramic Society, 55(1), 74-79.

Li, C.-y., Jia, Y.-r., Zhang, X.-c., Zhang, S.-y., & Tang, A.-d. (2014). Photocatalytic degradation of formaldehyde using mesoporous TiO2 prepared by evaporation-induced self-assembly. Journal of Central South University, 21(11), 4066-4070.

Li, G., Lv, L., Fan, H., Ma, J., Li, Y., Wan, Y., & Zhao, X. S. (2010). Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase. J Colloid Interface Sci, 348(2), 342-347.

Lin, K.-L., Lo, K.-W., Hung, M.-J., Cheng, T.-W., & Chang, Y.-M. (2017). Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker. Sustainable Environment Research, 27(5), 251-257.

Liu, S. H., & Lin, W. X. (2019). A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde. J Hazard Mater, 368, 468-476.

Liu, Y., Jia, H., Zhang, G., Sun, Z., Pan, Y., & Zheng, S. (2019). Synthesis and humidity control performances of natural opoka based porous calcium silicate hydrate. Advanced Powder Technology, 30(11), 2733-2741.

Obee, T. N., & Brown, R. T. (1995). TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ Sci Technol, 29(5), 1223-1231.

Park, H., Jeong, Y., Jun, Y., & Oh, J. E. (2016). Production of price-competitive bricks using a high volume of stone powder sludge waste and blast furnace slag through cementless CaO activation. Construction and Building Materials, 122, 343-353.

Pellegrino, F., Pellutiè, L., Sordello, F., Minero, C., Ortel, E., Hodoroaba, V.-D., & Maurino, V. (2017). Influence of agglomeration and aggregation on the photocatalytic activity of TiO 2 nanoparticles. Applied Catalysis B: Environmental, 216, 80-87.

Qudoos, A., Jeon, I. K., Kim, S. S., Lee, J. B., & Kim, H. G. (2020). Utilization of Waste Polysilicon Sludge in Concrete. Materials (Basel), 13(1).

Rezaee, A., Rangkooy, H., Khavanin, A., & Jafari, A. J. (2014). High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char. Environmental Chemistry Letters, 12(2), 353-357.

Rodríguez, E. D., Bernal, S. A., Provis, J. L., Gehman, J. D., Monzó, J. M., Payá, J., & Borrachero, M. V. (2013). Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 109, 493-502.

Salthammer, T., Mentese, S., & Marutzky, R. (2010). Formaldehyde in the Indoor Environment. Chemical Reviews, 110.

Sato M, F. S., Yano E. (2003). Adverse environmental health effects of ultra-low relative humidity indoor air. Occupation Health, 45(2), 133-136.

Sun, J., Xu, Z., Li, W., & Shen, X. (2017). Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement. Nanomaterials, 7(5).

Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), 1059-1073.

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.

Tian, F., Wu, Z., Yan, Y., Ge, X., & Tong, Y. (2015). Photodegradation of formaldehyde by activated carbon loading TiO2 synthesized via microwave irradiation. Korean Journal of Chemical Engineering, 32(7), 1333-1339.

Tomita, Y., Takahashi, R., Sato, S., Sodesawa, T., & Otsuda, M. (2004). Humidity Control Ability of Silica with Bimodal Pore Structures Prepared from Water Glass. Journal of the Ceramic Society of Japan, 112, 491-495.

Top, S., & Yildirim, M. (2017). Preparation of synthetic carnallite and amorphous silica from chromite beneficiation plant tailings. Gospodarka Surowcami Mineralnymi, 33(2), 5-23.

Tuan, B. L. A., Hwang, C.-L., Lin, K.-L., Chen, Y.-Y., & Young, M.-P. (2013). Development of lightweight aggregate from sewage sludge and waste glass powder for concrete. Construction and Building Materials, 47, 334-339.

Utama, P. S., Yamsaengsung, R., & Sangwichien, C. (2019). Production and Characterization of Precipitated Silica from Palm Oil Mill Fly Ash Using Co2 Impregnation and Mechanical Fragmentation. Brazilian Journal of Chemical Engineering, 36(1), 523-530.

Wang, B., Deng, Y., He, P., Dong, F., Dong, M., Dai, K., . . . Li, G. (2018). Powder Quartz/Nano-TiO2 Composite: Mechanochemical Preparation and Photocatalytic Degradation of Formaldehyde. Journal of Wuhan University of Technology-Mater. Sci. Ed., 33(6), 1381-1386.

Xiao, G., Huang, A., Su, H., & Tan, T. (2013). The activity of acrylic-silicon/nano-TiO2 films for the visible-light degradation of formaldehyde and NO2. Building and Environment, 65, 215-221.

Yifan, L. (2018). The synergistic effects of thermal environment and visibility upon the popularity of street retail area-A case study of a retail arcade in Guangzhou.

Yu, S., Cui, Y., Shao, Y., & Han, F. (2019). Research on the Comprehensive Performance of Hygroscopic Materials in an Office Building Based on EnergyPlus. Energies, 12(1).

Zhang, Z., Wang, C.-C., Zakaria, R., & Ying, J. Y. (1998). Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. Physical Chemistry.

Zheng, J., Shi, J., Ma, Q., Dai, X., & Chen, Z. (2017). Experimental study on humidity control performance of diatomite-based building materials. Applied Thermal Engineering, 114, 450-456.

Zhiyu, L., Guiyang, Y., Liuping, Z., Xiulan, W., & Zheqiang, H. (2010). Preparation of alumina abrasion-resistant ceramic grinding ball with spent FCC equilibrium catalyst. China Petroleum Processing and Petrochemical Technology, 12, 23-29.

Zhou, B., & Chen, Z. (2016). Experimental Study on the Hygrothermal Performance of Zeolite-Based Humidity Control Building Materials. International Journal of Heat and Technology, 34(3), 407-414.

黃雅蘭 (2014),廢白土污泥再利用之開發及熱特性之研究,明志科技大學環境與資源工程所,碩士論文。

李雙安 (2009),多孔材料添加廢玻璃燒結調濕陶瓷之探討,國立中央大學環境工程研究所,碩士論文。

羅友伶 (2012),室內建材調濕設計簡易計算手法之初探,國立雲林科技大學,碩士論文。

大畑 敬、河村 進 (2012),各種建築材料の基本的吸放湿性能の評価,第48号,島根県産業技術センター研究報告。

田坂太一 (2004),吸放湿試験,一般財団法人建材試験センター。

行政院環境保護署 (2014),污泥處理現況檢討及因應策略。

詹彥暉 (2007),以光觸媒/沸石複合材料同時處理 VOCs 及 NOx 之研究,國立交通大學環境工程研究所,碩士論文。

行政院環境保護署,107年事業廢棄物申報量統計報告,2019。

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw