進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707201714001700
論文名稱(中文) 氫氟酸蝕刻製作976-nm全光纖雷射腔之幫浦效率最佳化研究
論文名稱(英文) A study of optimizing the pump efficiency of a HF-etched 976-nm all-fiber Laser cavity
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 105
學期 2
出版年 106
研究生(中文) 藍詠智
研究生(英文) Yung-Chih Lan
學號 Q16041018
學位類別 碩士
語文別 中文
論文頁數 58頁
口試委員 指導教授-蔡宗祐
口試委員-郭昌恕
口試委員-曾碩彥
口試委員-林士廷
口試委員-李志成
中文關鍵字 摻鐿光纖  全光纖雷射系統  976奈米連續波雷射  蝕刻光纖 
英文關鍵字 Yb-doped fiber  all-fiber laser system  CW 976-nm laser  Etching fiber 
學科別分類
中文摘要 此論文使用全光纖系統,並利用cladding-pump的技術,以915-nm多模雷射二極體作為泵浦光源來激發摻鐿光纖,產生CW 976-nm雷射。但經模擬發現在cladding-pump系統下,泵浦強度過低,無法產生976-nm之雷射。故本論文主要目的是利用氫氟酸蝕刻縮減摻鐿光纖直徑,提升泵浦光源的強度,進而降低雷射門檻,使976-nm之雷射率先產生,且最佳化幫浦效率,進而提升雷射效率。我們發現用濃度為24.5%之HF蝕刻之光纖穿透率皆可保持在75%以上;反之,用30%之HF蝕刻之光纖穿透率皆低於20%,推測是用30%之HF去蝕刻光纖所製作之taper的斜率較大,使得多數的光折射出光纖外,故我們利用可精準調控轉速的馬達(PIA25),製作不同taper長度之光纖並作比較,證實了taper斜率越緩和,穿透率越高。再者因為增益光纖的材質為磷酸鹽玻璃,故與一般光纖之蝕刻速率有所差異。根據這個結果我們將taper製作的位置從原本的DCF 20/125移至摻鐿光纖上,原本的作法會蝕刻到DCF 20/125與摻鐿光纖,所以會造成兩光纖臨界處半徑有落差,造成穿透率不佳,故將taper改變至摻鐿光纖上,便可改善此問題。在未經任何熱擴張纖核(TEC)處理模態場不匹配之損耗的條件下,我們將雷射效率從原本的51 mW/W(5.1%),提升至82 mW/W(8.2%);雷射門檻由2.9W降至1.9W;最大光功率由223.8W提升至320.5W,顯示確實有大幅改善雷射腔之泵浦效率。最後我們換上模態場直徑與共振腔較匹配之FBG,改善雷射架構中存在的模態場不匹配之損耗,證實能提升雷射效率。
英文摘要 This thesis studies on the cladding-pump technique to pump the ytterbium-doped fiber with a 915-nm multimode laser diode as a pumping source to generate 976-nm laser which is under the all-fiber system. We found that the Yb-doped fiber is difficult to laser at 976-nm in the cladding-pump system. Therefore, our main purpose is that etching the Yb-doped fiber by HF to decrease the diameter so that increasing the intensity of pump source and reducing the laser threshold. After that, we improved the quality of etching and optimized the pump efficiency to increase the laser efficiency. We found that the transmission of the SMF-130V etching by HF 24.5% was above 75%. The transmission of the SMF-130V etching by HF 30% is less than 20%, Presumably the slope of taper etching by HF 30% is larger, so that most of the light refract out of the fiber. We make different lengths of taper and compare their transmissions. We confirm that the smoother the taper’s slope become, the higher the transmission is. Next, the material of gain fiber is the phosphate glass, so that the etching rate between the Yb-doped fiber and SMF-130V is different. According to this result, we change the position of the taper from DCF 20/125 to Yb-doped fiber. Because of the different etching rate, the original etching method would result in the difference in diameter at the connection point of two fibers. It leads to low transmission. Changing the position of the taper can solve this problem. In the condition without TEC to reduce the loss of mode-field mismatch, we successfully increased the laser efficiency from the original 5.1% to 8.2%, the threshold decreased from 2.9W to 1.9W, and the maximum measured power from 223.8W to 320.5W.
論文目次 摘要 i
致謝 x
圖目錄 xiii
表目錄 xv
符號 xvi
第 1 章 緒論 1
1-1 前言 1
1-2 研究動機 3
第 2 章 原理 6
2-1 雷射原理 6
2-2 CW-976nm 摻鐿光纖雷射架構 7
2-3 模態競爭原理 9
2-4 雷射增益推導與模擬 11
第 3 章 SMF-130V蝕刻與穿透率測試 18
3-1 實驗設計 18
3-1-1 步進馬達與壓電式致動器(PIA25) 20
3-2 步進馬達蝕刻與測量 22
3-2-1 蝕刻 22
3-2-2 測量 24
3-3 步進馬達蝕刻結果與討論 26
3-4 PIA25調變速度蝕刻 31
3-5 結論 33
第 4 章 摻鐿光纖蝕刻最佳化與雷射實驗 34
4-1 實驗設計 34
4-2 摻鐿光纖蝕刻與量測 35
4-2-1 蝕刻速率比較 35
4-2-2 蝕刻方法 38
4-2-3 量測方法 40
4-3 蝕刻改良 40
4-4 結果與討論 42
4-4-1 量測結果 42
4-4-2 雷射效率比較 45
4-5 結論 47
第 5 章 雷射系統損耗處理 48
5-1 模態場不匹配損耗 48
5-2 實驗設計 49
5-3 結果與討論 51
第 6 章 總結 53
6-1 成果與討論 53
6-2 未來展望 54
參考文獻 56
參考文獻 [1] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "DOUBLE CLAD, OFFSET CORE Nd FIBER LASER," in Optical Fiber Sensors, New Orleans, Louisiana, 1988, p. PD5.
[2] R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Optics Communications, vol. 136, pp. 375-378, 1997/04/01/ 1997.
[3] P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, "Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm," Optics Letters, vol. 16, pp. 961-963, 1991/06/15 1991.
[4] J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, "High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating," Optics Letters, vol. 33, pp. 1204-1206, 2008/06/01 2008.
[5] L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, M. V. Yashkov, A. N. Guryanov, et al., "75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm," Optics Letters, vol. 38, pp. 2230-2232, 2013/07/01 2013.
[6] P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, "Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser," Optics Communications, vol. 174, pp. 467-470, 2000/02/01/ 2000.
[7] P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Optics Letters, vol. 31, pp. 226-228, 2006/01/15 2006.
[8] P. Wang, J. K. Sahu, and W. A. Clarkson, "110 W double-ended ytterbium-doped fiber superfluorescent source with M2=1.6," Optics Letters, vol. 31, pp. 3116-3118, 2006/11/01 2006.
[9] S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, "1083 nm single frequency ytterbium doped fiber laser," Laser Physics Letters, vol. 2, p. 498, 2005.
[10] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of Quantum Electronics, vol. 33, pp. 1049-1056, 1997.
[11] X. Zhu, G. Zhu, W. Shi, J. Zong, K. Wiersma, D. Nguyen, et al., "976 nm Single-Polarization Single-Frequency Ytterbium-Doped Phosphate Fiber Amplifiers," IEEE Photonics Technology Letters, vol. 25, pp. 1365-1368, 2013.
[12] D. B. S. Soh, C. Codemard, S. Wang, J. Nilsson, J. K. Sahu, F. Laurell, et al., "A 980-nm Yb-doped fiber MOPA source and its frequency doubling," IEEE Photonics Technology Letters, vol. 16, pp. 1032-1034, 2004.
[13] M. Laroche, C. Bartolacci, B. Cadier, H. Gilles, S. Girard, L. Lablonde, et al., "Generation of 520 mW pulsed blue light by frequency doubling of an all-fiberized 978 nm Yb-doped fiber laser source," Optics Letters, vol. 36, pp. 3909-3911, 2011/10/01 2011.
[14] J. Yang, C. Zhang, C. Peng, C. Li, L. Wang, R. Chai, et al., "Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm," Chemistry, vol. 15, pp. 4649-55, 2009.
[15] Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Optics Express, vol. 12, pp. 6088-6092, 2004/12/13 2004.
[16] F. Röser, C. Jauregui, J. Limpert, and A. Tünnermann, "94 W 980 nm high brightness Yb-doped fiber laser," Optics Express, vol. 16, pp. 17310-17318, 2008/10/27 2008.
[17] J. Boullet, Y. Zaouter, R. Desmarchelier, M. Cazaux, F. Salin, J. Saby, et al., "High power ytterbium-doped rod-type three-level photonic crystal fiber laser," Optics Express, vol. 16, pp. 17891-17902, 2008/10/27 2008.
[18] H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, et al., "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 2-13, 1995.
[19] K. H. Ylä-Jarkko, R. Selvas, D. B. S. Son, J. K. Sahu, C. A. Codemard, J. Nilsson, et al., "A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser," in Advanced Solid-State Photonics, San Antonio, Texas, 2003, p. 103.
[20] V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980nm," Applied Physics Letters, vol. 92, p. 061113, 2008/02/11 2008.
[21] R. Wang, Y. Liu, J. Cao, S. Guo, L. Si, and J. Chen, "Experimental study on the all-fiberized continuous-wave ytterbium-doped laser operating near 980 nm," Applied Optics, vol. 52, pp. 5920-5924, 2013/08/20 2013.
[22] P. Jelger, M. Engholm, L. Norin, and F. Laurell, "Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber," Journal of the Optical Society of America B, vol. 27, pp. 338-342, 2010/02/01 2010.
[23] B. S. Wang and E. W. Mies, "Advanced topics on fusion splicing of specialty fibers and devices," 2007, pp. 678130-678130-14.
[24] K. Shiraishi, Y. Aizawa, and S. Kawakami, "Beam expanding fiber using thermal diffusion of the dopant," Journal of Lightwave Technology, vol. 8, pp. 1151-1161, 1990.
[25] X. Zhou, Z. Chen, H. Zhou, and J. Hou, "Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique," Applied Optics, vol. 53, pp. 5053-5057, 2014/08/01.
[26] J. Zhou, B. He, Y. Feng, and X. Gu, "High efficiency single-mode-multimode-single-mode fiber laser with diffraction-limited beam output," Applied Optics, vol. 53, pp. 5554-5558, 2014/08/20.
[27] X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, et al., "Single-transverse-mode output from a fiber laser based on multimode interference," Optics Letters, vol. 33, pp. 908-910, 2008/05/01 2008.
[28] D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, "Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber," IEEE Photonics Technology Letters, vol. 19, pp. 943-945, 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw