進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707201614445200
論文名稱(中文) 以Thermosynechococcus sp. CL-1應用於固碳、雌激素降解與生質潛能分析
論文名稱(英文) Thermosynechococcus sp. CL-1 applied to CO2 fixation, estrogen degradation and bioenergy production potential analysis
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 鄭琇方
研究生(英文) Xiu-Fang Zheng
學號 P56031036
學位類別 碩士
語文別 英文
論文頁數 148頁
口試委員 指導教授-朱信
口試委員-張嘉修
口試委員-林財富
口試委員-黃良銘
中文關鍵字 Thermosynechococcus sp. CL-1  二氧化碳  雌激素  光照強度  醣類  脂質  蛋白質 
英文關鍵字 Thermosynechococcus sp. CL-1  CO2 fixation  17 β-estradiol degradation  light intensity  DIC concentration  carbohydrate  lipid  protein 
學科別分類
中文摘要 自工業革命以來,隨著二氧化碳濃度持續上升,造成溫室效應增強與全球氣候變遷加劇,二氧化碳減量乃成為重要議題。於碳捕獲與封存(CCS)技術中,以生物固碳法為最具發展潛力及永續性。近年來,因對於環境荷爾蒙的影響日漸重視,「環境荷爾蒙」又稱為「內分泌干擾物質」,其中雙酚A(bisphenol A)、雌二醇(E2)與炔基雌二醇(EE2)已於台灣環境水體中被檢測出,會經由空氣、水、土壤、食物等途徑進入人體,模仿體內的天然荷爾蒙與受體結合後,造成內分泌系統不正常運作,而導致疾病的產生。
在本研究中,利用嗜熱藍綠菌Thermosynechococcus sp. CL-1 (TCL-1)降解水體中雌二醇(E2),同時進行二氧化碳固定,以及固碳後將其再利用,作為生質能源。評估在不同雌激素濃度(0.1、1、3、10 mg/L)、光照強度(500、1,000、2,000 μE m-2 s-1),與無機碳碳源濃度(0、56.6、113.2 mM)培養下,其生質體產率、二氧化碳固定速率、雌二醇降解效率與生質潛能(醣類、脂質、蛋白質)的影響。
研究結果顯示,最大生質體產率發生在雌二醇濃度為10 mg/L、光照強度為2,000 μE/m2/s和113.2 mM初始無機碳碳源濃度下為56.4 ± 0.0 mg/L/h,最大二氧化碳固定速率為79.8 ± 0.1 mg/L/h。最大雌二醇降解效率發生在雌二醇濃度為1 mg/L、光照強度為2,000 μE/m2/s 和113.2 mM初始無機碳碳源濃度下為86.9 ± 0.2 %,其中最大光降解效率發生在雌二醇濃度為10 mg/L、光照強度為2,000 μE/m2/s和113.2 mM初始無機碳碳源濃度下為12.4 ± 2.4 %。最大生物降解效率發生在雌二醇濃度為10 mg/L、光照強度為2,000 μE/m2/s和56.6 mM初始無機碳碳源濃度下為73.7 ± 4.0 %。最大醣類含量發生在雌二醇濃度為10 mg/L、光照強度為2,000 μE/m2/s 和56.6 mM初始無機碳碳源濃度下培養8小時為43.3 ± 0.6 %。最大醣類產率發生在雌二醇濃度為10 mg/L、光照強度為2,000 μE/m2/s 和113.2 mM初始無機碳碳源濃度下培養4小時為23.9 ± 0.5 mg/L/h。最大脂質含量發生在雌二醇濃度為10 mg/L、光照強度為500 μE/m2/s 和113.2 mM初始無機碳碳源濃度下培養4小時為23.3 ± 0.9 %。最大脂質產率發生在雌二醇濃度為3 mg/L、光照強度為2,000 μE/m2/s 和113.2 mM初始無機碳碳源濃度下培養12小時為19.6 ± 1.5 mg/L/h。最大蛋白質含量發生在雌二醇濃度為3 mg/L、光照強度為2,000 μE/m2/s 和113.2 mM初始無機碳碳源濃度下培養12小時為52.9 ± 0.1 %。最大蛋白質產率發生在雌二醇濃度為10 mg/L、光照強度為1,000 μE/m2/s和113.2 mM初始無機碳碳源濃度下培養8小時為42.4 ± 0.1 mg/L/h。
由本研究之結果可知,固碳速率最大影響因素在於生質體產率,其次才為細胞中碳含量。雌二醇降解效率最大影養因素在於生質體產率,其次才為初始無機碳碳源濃度。因此將本研究結果比較後,發現在以光照強度為2,000 μE/m2/s、無機碳碳源濃度為113.2 mM且雌二醇濃度為10 mg/L培養下,有較優勢的生質體產率、二氧化碳固定速率與生質能(醣類、脂質與蛋白質)產率。此外,雌二醇濃度從1 mg/L提高為10 mg/L、光照強度為2,000 μE/m2/s與無機碳碳源濃度為113.2 mM培養下可以刺激醣類與脂質產率,增加生質酒精與生質柴油產率。
英文摘要 Since industrial revolution, CO2 concentration in atmosphere has risen and influenced on extreme weather and global warming. Carbon capture and sequestration (CCS) technologies are therefore under researched in recent decades to solve the problems. Biological carbon mitigation (BCM) was considered as a sustainable process which uses microalgae or cyanobacteria to absorb CO2 from atmosphere through photosynthesis. In recent years, the impact of environmental hormones is noticed. “Environmental hormones” are also named “endocrine disruptor compounds” and have been found in rivers. Those chemicals affect human health through air, water, soil and food chain. EDCs are defined by the US Environmental Protection Agency as exogenous chemicals that affect the structure or function of the endocrine system and cause adverse effects.
In this study, the combination of the advantage of the chemical-alkaline-absorption and BCM is applied as the technology of carbon fixation from one of the main CO2 emission sources, power plant. CO2 has much more solubility in the alkaline solution and becomes HCO3- or CO32- as the carbon source for cyanobacteria. In order to increase the biomass productivity and carbon fixation rate, the higher surface-area-ratio flat panel was used as the photobioreactor (PBR) with high initial biomass concentration. For meeting this practical requirement, thermophilic and basophilic cyanobacteria Thermosynechococcus sp. CL-1 (TCL-1) was chosen in this study. TCL-1 is expected to degrade 17 β-estradiol (E2), reduce the CO2 level in the atmosphere, and be applied in the production of bioenergy. 17 β-estradiol (E2) concentration, light intensity and DIC concentration have been used as the operating parameters to affect the degradation of E2 and the accumulation of the carbohydrate, lipid and protein in this study.
The results show TCL-1 can achieve the highest biomass productivity 56.4 ± 0.0 mg/L/h, CO2 fixation rate 79.8 ± 0.1 mg/L/h, biomass increment 23.2 ± 2.0 % if cultivated in the 113.2 mM initial DIC under 2,000 μE/m2/s with 10 mg/L E2.
It’s enough for E2 photolysis while the light intensity of LED is 500 μE/m2/s. The highest biodegradation rate of E2 by TCL-1 under 56.6 mM DIC and 2,000 μE/m2/s is 73.7 ± 4.0 %. The highest total degradation rate of E2 by TCL-1 is 86.9 ± 0.2 % under 1 mg/L E2, 113.2 mM DIC and 2,000 μE/m2/s. 8.
The maximum carbohydrate content is 43.3 ± 0.6 % at 8h if cultivated in the 56.6 mM initial DIC under 2,000 μE/m2/s with 10 mg/L E2. The maximum carbohydrate productivity is 23.9 ± 0.5 mg/L/h at 4h if cultivated in the 113.2 mM initial DIC under 2,000 μE/m2/s with 10 mg/L E2. The maximum lipid content is 23.3 ± 0.9 % at 4h if cultivated in the 113.2 mM initial DIC under 500 μE/m2/s with 10 mg/L E2. The maximum lipid productivity is 19.6 ± 1.5 mg/L/h at 12h if cultivated in the 113.2 mM initial DIC under 2,000 μE/m2/s with 3 mg/L E2. The maximum protein content is 52.9 ± 0.1 % at 12h if cultivated in the 113.2 mM initial DIC under 2,000 μE/m2/s with 3 mg/L E2. The maximum protein productivity is 42.4 ± 0.1 mg/L/h at 8h if cultivated in the 113.2 mM initial DIC under 1,000 μE/m2/s with 10 mg/L. As E2 concentration increases from 1 mg/L to 10 mg/L, it may induce carbohydrate and lipid productivity for producing bioethanol and biodiesel.
論文目次 摘要 I
Abstract III
致謝 V
Content A
List of Figures D
List of Tables I
Nomenclature M
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Objectives 5
Chapter 2 Literature Review 7
2-1 Global warming 7
2-2 Photosynthesis 9
2-2-1 Light reaction 9
2-2-2 Calvin cycle 11
2-3 Endocrine disruptor compounds (EDCs) 13
2-4 Estrogen 15
2-5 Cyanobacteria 19
2-6 Bioenergy 20
2-7 Photobioreactor (PBR) 22
2-8 Influential factors for cyanobacteria conditions 25
2-8-1 Light 25
2-8-2 Temperature 25
2-8-3 Nutrients 26
2-8-4 pH 26
2-8-5 Salinity 27
Chapter 3 Materials and method 28
3-1 Thermosynechococcus sp. CL-1 28
3-2 Chemical and Materials 29
3-2-1 Medium 29
3-2-2 Chemicals for 17 β-estradiol analysis 31
3-2-3 Chemicals for bioenergy production analysis 31
3-3 Experimental equipments 32
3-3-1 Cultivation equipments 32
3-3-2 Analysis equipments 33
3-3-3 Other equipments 35
3-4 Experimental Methods 38
3-4-1 Experimental process 38
3-4-2 Photosynthesis bioreactor 39
3-4-3 Conservation 41
3-4-4 Biomass source cultivation 41
3-4-5 Batch cultivation 43
3-5 Analysis method 44
3-5-1 Biomass concentration analysis 44
3-5-2 Specific growth rate and biomass productivity 45
3-5-3 CO2 fixation rate analysis 46
3-5-4 Estrogen concentration analysis 47
3-5-5 Bioenergy production analysis 49
3-6 Logistic regression 51
Chapter 4 Results and Discussion 53
4-1 Effect of different endocrine disruptor compounds 53
4-2 Effect of initial 17 β-estradiol concentration 60
4-2-1 Biomass productivity and CO2 fixation rate 60
4-2-2 Medium utilization 66
4-2-3 17 β-estradiol degradation 68
4-2-4 Bioenergy production 71
4-3 Effect of light intensity 81
4-3-1 Biomass productivity and CO2 fixation rate 81
4-3-2 Medium utilization 87
4-3-3 17 β-estradiol degradation 89
4-3-4 Bioenergy production 94
4-4 Effect of initial DIC concentration 103
4-4-1 Biomass productivity and CO2 fixation rate 103
4-4-2 Medium utilization 109
4-4-3 17 β-estradiol degradation 111
4-4-4 Bioenergy production 114
4-5 Logistic regression 126
Chapter 5 Conclusion and Suggestion 136
5-1 Conclusion 136
5-2 Suggestion 138
Chapter 6 References 139
參考文獻 Abargues, M., Ferrer, J., Bouzas, A., Seco, A., 2013. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae. Bioresource Technology 149, 142-148.
Allen, J.F., 2002. Photosynthesis of ATP - Electrons, proton pumps, rotors, and poise. Cell 110, 273-276.
Andrasi, N., Helenkar, A., Zaray, G., Vasanits, A., Molnar-Perl, I., 2011. Derivatization and fragmentation pattern analysis of natural and synthetic steroids, as their trimethylsilyl (oxime) ether derivatives by gas chromatography mass spectrometry: Analysis of dissolved steroids in wastewater samples. Journal of Chromatography A 1218, 1878-1890.
Badger, M.R., 1987. The CO2-concentrating mechanism in aquatic phototrophs. The Biochemistry of plants: a comprehensive treatise (USA).
Bar-Even, A., Noor, E., Lewis, N.E., Milo, R., 2010. Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of Sciences 107, 8889-8894.
Batista, A.P., Gouveia, L., Bandarra, N.M., Franco, J.M., Raymundo, A., 2013. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research 2, 164-173.
Bauen, A., Berndes, G., Junginger, M., Londo, M., Vuille, F., Ball, R., Bole, T., Chudziak, C., Faaij, A., Mozaffarian, H., 2009. Bioenergy: a sustainable and reliable energy source. A review of status and prospects. Bioenergy: a sustainable and reliable energy source. A review of status and prospects.
Berman-Frank, I., Lundgren, P., Falkowski, P., 2003. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology 154, 157-164.
Bowman, J.C., Readman, J.W., Zhou, J.L., 2003. Sorption of the natural endocrine disruptors, oestrone and 17 β-oestradiol in the aquatic environment. Environmental Geochemistry and Health 25, 63-67.
BP, Renewables in this review, 2014,
(http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy.html)
BP, Biofuels production, 2015,
(http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/biofuels-production.html)
Brandao, M., Levasseur, A., Kirschbaum, M.U.F., Weidema, B.P., Cowie, A.L., Jorgensen, S.V., Hauschild, M.Z., Pennington, D.W., Chomkhamsri, K., 2013. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. International Journal of Life Cycle Assessment 18, 230-240.
Brienza, M., Ahmed, M.M., Escande, A., Plantard, G., Scrano, L., Chiron, S., Bufo, S., Goetz, V., 2014. Relevance of a photo-Fenton like technology based on peroxymonosulphate for 17 β-estradiol removal from wastewater. Chemical Engineering Journal 257, 191-199.
Brune, D.E., Lundquist, T.J., Benemann, J.R., 2009. Microalgal Biomass for Greenhouse Gas Reductions: Potential for Replacement of Fossil Fuels and Animal Feeds. Journal of Environmental Engineering 135, 1136-1144.
Carvalho, A.P., Meireles, L.A., Malcata, F.X., 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress 22, 1490-1506.
Chang, H.-S., Choo, K.-H., Lee, B., Choi, S.-J., 2009. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. Journal of Hazardous Materials 172, 1-12.
Charpy, L., Casareto, B., Langlade, M.-J., Suzuki, Y., 2012. Cyanobacteria in coral reef ecosystems: a review. Journal of Marine Biology 2012.
Cheah, W.Y., Show, P.L., Chang, J.S., Ling, T.C., Juan, J.C., 2015. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology 184, 190-201.
Chen, C.-Y., Wen, T.-Y., Wang, G.-S., Cheng, H.-W., Lin, Y.-H., Lien, G.-W., 2007. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of the Total Environment 378, 352-365.
Chen, H.-H., 2007. CO2-fixation by a Cyanobacterail strain, Thermosyenechococcus sp. CL-1, and its Potential Bopenergy Composition Analysis. Environmental Engineering. National Cheng Kung University.
Chen, T.S., Chen, T.C., Yeh, K.J.C., Chao, H.R., Liaw, E.T., Hsieh, C.Y., Chen, K.C., Hsieh, L.T., Yeh, Y.L., 2010. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. Science of the Total Environment 408, 3223-3230.
Chou, P.-H., Lin, Y.-L., Liu, T.-C., Chen, K.-Y., 2015. Exploring potential contributors to endocrine disrupting activities in Taiwan's surface waters using yeast assays and chemical analysis. Chemosphere 138, 814-820.
Chowdhury, R.R., Charpentier, P.A., Ray, M.B., 2011. Photodegradation of 17 beta-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters. Journal of Photochemistry and Photobiology A 219, 67-75.
Chu, H.M., 2014. Effects of cultivation condition and pretreatment of carbohydrate on the CO2 fixation and production of monosaccharide by Thermosynechococcus sp. CL-1. Environmental Engineering. National Cheng Kung University.
Cui, C.W., Ji, S.L., Ren, H.Y., 2006. Determination of steroid estrogens in wastewater treatment plant of a controceptives producing factory. Environmental Monitoring and Assessment 121, 409-419.
D'Souza, F.M., Kelly, G.J., 2000. Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 181, 311-329.
Davis, A.D., 2007. Light-Dark FTIR Absorbance Difference Spectroscopy for the Study of Photosystem I. Brock University.
de los Rios, A., Grube, M., Sancho, L.G., Ascaso, C., 2007. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology 59, 386-395.
De Philippis, R., Vincenzini, M., 1998. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiology Reviews 22, 151-175.
de Sa Salomao, A.L., Soroldoni, S., Marques, M., Hogland, W., Bila, D.M., 2014. Effects of Single and Mixed Estrogens on Single and Combined Cultures of D-subspicatus and P-subcapitata. Bulletin of Environment Contamination and Toxicology 93, 215-221.
Dhillon, R., von Wuehlisch, G., 2013. Mitigation of global warming through renewable biomass. Biomass and Bioenergy 48, 75-89.
Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A., 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy 88, 3331-3335.
EPA, Environmental hormones definition description, 2010,
(http://www.epa.gov.tw/lp.asp?ctNode=31448&CtUnit=983&BaseDSD=7&mp=epa)
Farrelly, D.J., Everard, C.D., Fagan, C.C., McDonnell, K.P., 2013. Carbon sequestration and the role of biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews 21, 712-727.
Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D., 2008. Advancesn in CO2 capture technology - The US Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2, 9-20.
Fitzgerald, G.P., Gerloff, G.C., Skoog, F., 1952. Studies on chemicals with selective toxicity to blue-green algae. Sewage and Industrial Wastes, 888-896.
Fogg, G., 2012. The blue-green algae. Elsevier.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., 2007. Changes in atmospheric constituents and in radiative forcing. Chapter 2. Climate Change 2007. The Physical Science Basis.
Gañán, J., Pérez-Quintanilla, D., Morante-Zarcero, S., Sierra, I., 2013. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD. Journal of Hazardous Materials 260, 609-617.
Ge, L., Deng, H., Wu, F., Deng, N., 2009. Microalgae‐promoted photodegradation of two endocrine disrupters in aqueous solutions. Journal of Chemical Technology and Biotechnology 84, 331-336.
Gore, A.C., 2007. Introduction to endocrine-disrupting chemicals. Endocrine-Disrupting Chemicals. Springer, pp. 3-8.
Gray, K.A., Zhao, L., Emptage, M., 2006. Bioethanol. Current opinion in chemical biology 10, 141-146.
Gupta, V., Ratha, S.K., Sood, A., Chaudhary, V., Prasanna, R., 2013. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal research 2, 79-97.
Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., 2000. Plant cellular and molecular responses to high salinity. Annual review of plant biology 51, 463-499.
Herzog, H., Golomb, D., 2004. Carbon capture and storage from fossil fuel use. Encyclopedia of energy 1, 1-11.
Ho, S.-H., Chen, C.-Y., Chang, J.-S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology 113, 244-252.
Hom-Diaz, A., Llorca, M., Rodriguez-Mozaz, S., Vicent, T., Barcelo, D., Blanquez, P., 2015. Microalgae cultivation on wastewater digestate: beta-estradiol and 17 alpha-ethynylestradiol degradation and transformation products identification. Journal of Environment Management 155, 106-113.
Hrouzková, S., Matisová, E., 2012. Endocrine disrupting pesticides. Pesticide—Advances in Chemical and Botanical Pesticides, 99-126.
Hsieh, C.Y., Liaw, E.T., Fan, K.M., 2015. Removal of veterinary antibiotics, alkylphenolic compounds, and estrogens from the Wuluo constructed wetland in southern Taiwan. Journal of Environment Science and Health, Part A Environmental Science 50, 151-160.
Hsueh, H.T., Chu, H., Chang, C.C., 2007a. Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon. Environmental science and technology 41, 1909-1914.
Hsueh, H.T., Chu, H., Yu, S.T., 2007b. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66, 878-886.
Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. Journal of Photochemistry and Photobiology B: Biology 95, 33-39.
Jensen, K., Jensen, P.E., Møller, B.L., 2012. Light-driven chemical synthesis. Trends in plant science 17, 60-63.
Joset, F., Jeanjean, R., Hagemann, M., 1996. Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiologia Plantarum 96, 738-744.
Klingelhofer, I., Morlock, G.E., 2015. Bioprofiling of Surface/Wastewater and Bioquantitation of Discovered Endocrine-Active Compounds by Streamlined Direct Bioautography. Analytical Chemistry 87, 11098-11104.
Kochert, G., 1978a. Carbohydrate determination by the phenol-sulfuric acid method. Handbook of Pycological Method's: Pysiological and Biochemical methods. London. New York, Melbourne: Cambridge University Press., pp. 95-97.
Kochert, G., 1978b. Protein determination by dye binding. Hellebust JA, Craigie JS eds. Handbook of Phycological Method's: Physiological and Biochemical Methods. London. New York, Melbourne: Cambridge University Press.
Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 102, 4945-4953.
La Motta, E.J., 1976. Kinetics of continuous growth cultures using the logistic growth curve. Biotechnology and Bioengineering 18, 1029-1032.
Lee, T.Y., 2015. Effects of cultivation conditions on the CO2 fixation rate and production of zeaxanthin and β-carotene by Thermosynechococcus sp. CL-1.
Lishman, L., Smyth, S.A., Sarafin, K., Kleywegt, S., Toito, J., Peart, T., Lee, B., Servos, M., Beland, M., Seto, P., 2006. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment 367, 544-558.
Liu, B., Liu, X., 2004. Direct photolysis of estrogens in aqueous solutions. Science of Total Environment 320, 269-274.
Liu, J., Weinbauer, M.G., Maier, C., Dai, M., Gattuso, J.-P., 2010. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology 61, 291-305.
Liu, Z.-h., Kanjo, Y., Mizutani, S., 2009. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment—physical means, biodegradation, and chemical advanced oxidation: a review. Science Total Environment 407, 731-748.
Lu, C., Vonshak, A., 2002. Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia plantarum 114, 405-413.
Lurling, M., Eshetu, F., Faassen, E.J., Kosten, S., Huszar, V.L.M., 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58, 552-559.
Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresource Technology 70, 1-15.
Miller, A.G., Espie, G.S., Canvin, D.T., 1990. Physiological aspects of CO2 and HCO3-transport by cyanobacteria: a review. Canadian Journal of Botany 68, 1291-1302.
Mohagheghian, A., Nabizadeh, R., Mesdghinia, A., Rastkari, N., Mahvi, A.H., Alimohammadi, M., Yunesian, M., Ahmadkhaniha, R., Nazmara, S., 2014. Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran. Journal of Environmental Health Science and Engineering 12, 7.
Molina, E., Fernández, J., Acién, F., Chisti, Y., 2001. Tubular photobioreactor design for algal cultures. Journal of Biotechnology 92, 113-131.
NOAAESRL, 2015. Trends in Atmospheric Carbon Dioxide.
(http://www.esrl.noaa.gov/gmd/ccgg/trends/)
O'Neil, M.J., 2006. The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals.
Pal, A., Gin, K.Y.H., Lin, A.Y.C., Reinhard, M., 2010. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science Total Environment 408, 6062-6069.
Paustian, T., 2000. Lithotrophic Bacteria - Rock Eaters.
Pessoa, G.P., de Souza, N.C., Vidal, C.B., Alves, J.A., Firmino, P.I.M., Nascimento, R.F., dos Santos, A.B., 2014. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science Total Environment 490, 288-295.
Post, A.F., de Wit, R., Mur, L.R., 1985. Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. Journal of Plankton Research 7, 487-495.
Přibyl, P., Cepák, V., Zachleder, V., 2012. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Applied microbiology and biotechnology 94, 549-561.
Pruvost, J., Van Vooren, G., Le Gouic, B., Couzinet-Mossion, A., Legrand, J., 2011. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technology 102, 150-158.
Pulz, O., 2001. Photobioreactors: production systems for phototrophic microorganisms. Applied microbiology and biotechnology 57, 287-293.
Qiang, H., Richmond, A., 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. Journal of Applied Phycology 8, 139-145.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis‐Cassan, C., Isambert, A., Raherimandimby, M., 2008. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. Journal of Chemical Technology and Biotechnology 83, 842-848.
Saha, S.K., Moane, S., Murray, P., 2013. Effect of macro-and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18. Bioresource Technology 147, 23-28.
Sarmah, A.K., Northcott, G.L., Leusch, F.D.L., Tremblay, L.A., 2006. A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Science Total Environment 355, 135-144.
Schubert, H., Hagemann, M., 1990. Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiology Letters 71, 169-172.
Servos, M.R., Bennie, D.T., Burnison, B.K., Jurkovic, A., McInnis, R., Neheli, T., Schnell, A., Seto, P., Smyth, S.A., Ternes, T.A., 2005. Distribution of estrogens, 17 beta-estradiol and estrone, in Canadian municipal wastewater treatment plants. Science Total Environment 336, 155-170.
Shi, W., Wang, L., Rousseau, D.P.L., Lens, P.N.L., 2010. Removal of estrone, 17 alpha-ethinylestradiol, and 17-estradiol in algae and duckweed-based wastewater treatment systems. Environment Science and Pollution Research 17, 824-833.
Singh, R., Sharma, S., 2012. Development of suitable photobioreactor for algae production–A review. Renewable and Sustainable Energy Reviews 16, 2347-2353.
Singhal, G., 1999. Concepts in photobiology: photosynthesis and photomorphogenesis. Springer.
Solomon, S., 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press.
Sornalingam, K., McDonagh, A., Zhou, J.L., 2016. Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges. Science Total Environment 550, 209-224.
Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. Journal of bioscience and bioengineering 101, 87-96.
Stanier, R.Y., Cohenbazire, G., 1977. Phototropic Prokaryotes - Cyanobacteria. annual review of microbiology 31, 225-274.
Su, C.M., Hsueh, H.T., Chen, H.H., Chu, H., 2012. Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system. Chemosphere 88, 706-711.
Su, C.M., Hsueh, H.T., Li, T.Y., Huang, L.C., Chu, Y.L., Tseng, C.M., Chu, H., 2013. Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus sp. CL-1. Bioresource Technology 145, 162-165.
Subashchandrabose, S.R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., 2011. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances 29, 896-907.
Tahara, H., Uchiyama, J., Yoshihara, T., Matsumoto, K., Ohta, H., 2012. Role of Slr1045 in environmental stress tolerance and lipid transport in the cyanobacterium Synechocystis sp PCC6803. Biochimica Et Biophysica Acta-Bioenergetics 1817, 1360-1366.
Taiwan-power-company, 2015. Power generation accounts.
(http://www.taipower.com.tw/content/new_info/new_info-b23.aspx?LinkID=7)
Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., Karube, I., 1992. Carbon dioxide fixation by a unicellular green alga Oocystis sp. Journal of Biotechnology 25, 261-267.
Tamoi, M., Miyazaki, T., Fukamizo, T., Shigeoka, S., 2005. The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD (H)/NADP (H) ratio under light/dark conditions. The Plant Journal 42, 504-513.
Taylor, K.L., Brackenridge, A.E., Vivier, M.A., Oberholster, A., 2006. High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue. Journal of Chromatography A 1121, 83-91.
Touloupakis, E., Cicchi, B., Silva Benavides, A.M., Torzillo, G., 2016. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Applied Microbiology and Biotechnology 100, 1333-1341.
Ugwu, C., Aoyagi, H., Uchiyama, H., 2008. Photobioreactors for mass cultivation of algae. Bioresource technology 99, 4021-4028.
USEPA, Contaminant Candidate List 3, 2012,
(https://www.epa.gov/ccl/contaminant-candidate-list-3-ccl-3#chemical-list)
USEPA, How Can Chemicals Disrupt the Endocrine System, 2015,
(http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy.html)
Vargas, M., Rodriguez, H., Moreno, J., Olivares, H., Del Campo, J., Rivas, J., Guerrero, M., 1998. Biochemical composition and fatty acid content of filamentous nitrogen fixing cyanobacteria. Journal of phycology 34, 812-817.
Vinyard, D.J., Ananyev, G.M., Charles Dismukes, G., 2013. Photosystem II: the reaction center of oxygenic photosynthesis*. Annual review of biochemistry 82, 577-606.
Wang, B., Li, Y.Q., Wu, N., Lan, C.Q., 2008. CO(2) bio-mitigation using microalgae. Applied Microbiology Biotechnology. 79, 707-718.
Williams, J., Merrilees, P., 1970. The removal of water and nonlipid contaminants from lipid extracts. Lipids 5, 367-370.
Wu, P., Ridley, J., Pardaens, A., Levine, R., Lowe, J., 2015. The reversibility of CO2 induced climate change. Climate Dynamics 45, 745-754.
Xu, H., Miao, X., Wu, Q., 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology 126, 499-507.
Xu, Y.F., Xu, N., Llewellyn, N.R., Tao, H.C., 2014. Occurrence and removal of free and conjugated estrogens in wastewater and sludge in five sewage treatment plants. Environ Science-Process Impact 16, 262-270.
Yamanaka, R., Nakamura, K., Murakami, A., 2011. Reduction of exogenous ketones depends upon NADPH generated photosynthetically in cells of the cyanobacterium Synechococcus PCC 7942. AMB express 1, 1-8.
Ying, G.-G., Kookana, R.S., Dillon, P., 2003. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research 37, 3785-3791.
Yu, C.-P., Deeb, R.A., Chu, K.-H., 2013. Microbial degradation of steroidal estrogens. Chemosphere 91, 1225-1235.
Zhang, Y., Habteselassie, M.Y., Resurreccion, E.P., Mantripragada, V., Peng, S., Bauer, S., Colosi, L.M., 2014. Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustainable Chemistry and Engineering 2, 2544-2553.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw