進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707201600204600
論文名稱(中文) SiP產品於迴焊製程中之溫度分佈及封裝後翹曲模擬
論文名稱(英文) Thermal Simulation during Reflow Process and Warpage Simulation after Encapsulation of SiP
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 鄧上軒
研究生(英文) Shang-Shiuan Deng
學號 n18981026
學位類別 博士
語文別 中文
論文頁數 93頁
口試委員 召集委員-許來興
指導教授-黃聖杰
指導教授-李輝煌
口試委員-溫昌達
口試委員-陳鐵城
口試委員-黃明賢
口試委員-黃俊欽
口試委員-呂維倫
中文關鍵字 系統級封裝  迴焊製程  P-V-T-C方程式  翹曲分析  可靠度分析 
英文關鍵字 System in Package  reflow process  SiP  P-V-T-C equation  warpage analysis 
學科別分類
中文摘要 System in Package (系統級封裝、系統構裝,SiP) 是基於SoC(System on Chip)所發展出來的一種封装技術,根據Amkor對SiP定義為「在一IC包裝體中,包含多個晶片或單一晶片,加上被動元件、電容、電阻、連接器、天線…等任一元件以上之封裝,即視為SiP」,也就是說在一個封裝內不僅可以組裝多個晶片,還可以將包含上述不同類型的器件和電路晶片疊在一起,構建成更為複雜的、完整的系統。但以目前技術來說,對系統級封裝問題還是相當多,包含迴焊不良、成品的翹曲與良率無法提升…等等,故本論文希望藉由數值模擬方式來預測目前在系統級封裝可能所遭遇的問題。
SiP產品的過程中,會有一迴焊(reflow)製程,目的為加熱表面的焊錫,使焊錫熔化再凝固後能固定主、被動元件在特定位置。迴焊溫度大致上可分為預熱、浸潤、回焊和冷卻四個部份。SiP產品在回焊製程中每一階段的溫度分佈不均,皆會產生產品缺陷而造成良率的問題。因此本文提出一種數值模擬的方式來預測迴焊過程中SiP產品的溫度分佈情況。
本文亦提出解決方案來預測於SiP產品封裝後發生的翹曲現象。以往研究中,大部分均認為造成IC構裝元件翹曲的主要原因為構成材料之熱膨脹係數不同所造成的不均勻體積收縮,卻因此忽略了環氧樹脂(EMC)本身固化收縮的材料特性,因而造成利用電腦模擬分析時,容易低估或高估成品翹曲量。本文將同時考量環氧樹脂之固化效應與溫度效應所造成的體積收縮,以建立一套分析封裝體翹曲的分析方法。在研究中用來描述環氧樹脂行為的關係式為P-V-T-C關係式(Pressure-Volume-Temperature-Cure relationship),也就是將環氧樹脂因固化效應所造成的體積收縮行為表示成壓力(pressure)、體積(volume)、溫度(temperature)、熟化率(degree of cure)相關之方程式。而溫度效應所造成的環氧樹脂體積收縮量則考慮是由於構成封裝體的材料之熱膨脹係數不同所造成。
在本文的最後則經由產線上實際的案例來加以驗證所建立之分析方法的可行度,經由比對實驗的結果與模擬分析的結果,証實本文所建立的迴焊溫度分析及翹曲分析方法不僅具有經濟效益,亦有相當不錯的準確度。
英文摘要 The purpose of the reflow process was to fix the components in the specific location of SiP. The reflow profile has four zones: pre-heating zone, soak zone, reflow zone and cooling zone, SiP will induce the defects in each zone with the uniform temperature distribution. A numeral calculation for computational modeling and prediction of temperature distribution of SiP during reflow process was presented in this thesis.

A methodology for computational modeling and prediction of warpage phenomena was also presented in this thesis. Warpage problems play an important role in IC encapsulation processes. Previous researchers had focused on warpage analyses with temperature changes between constituent materials and neglected the cure shrinkage effects. However, more and more studies indicate that estimation of warpage according to CTE (Coefficient of Thermal Expansion) was not able to predict the amount of warpage in IC packaging. The EMC (Epoxy molding compound) properties were obtained by various techniques: degree of cure by differential scanning calorimeter (DSC), modulus by P-V-T-C testing machine. These experimental data were used to formulate P-V-T-C equation.

By comparing the experimental results and simulation results, it was shown that the analytic simulation could achieve good accurate and efficient prediction of temperature distribution and warpage phenomena.
論文目次 中文摘要 I
Extended Abstract III
誌謝 XVII
目錄 XVIII
表目錄 XXI
圖目錄 XXII
符號說明 XXV
第一章 緒論 1
1-1 迴焊製程簡介 2
1-2 IC封裝製程簡介 5
1-3 迴焊不良與封裝翹曲問題 10
1-3-1 迴焊不良 10
1-3-2 收縮與翹曲現象 12
1-4 研究目的 14
1-5 文獻回顧 16
1-6 本文架構 21
第二章 理論分析 22
2-1 計算流體力學 23
2-1-1 統馭方程式 25
2-1-2 紊流模式 29
2-1-3 壁面函數 (Wall Function) 31
2-1-4 壓力求解器運算法則 (Pressure-Based) 35
2-2 量測熟化反應速率之方式 36
2-3 固化反應動力方程式 38
2-4 P-V-T-C關係式 40
2-5 應力應變統馭方程式 45
2-5-1 固化收縮理論模式 46
2-5-2 應力應變關係式 48
第三章 溫度場分析 55
3-1 建立3D分析模型 56
3-2 流場及溫度場分析 61
3-2-1 穩態分析 62
3-2-2 瞬態分析 64
3-3 溫度量測設備 65
3-4 結果與討論 67
3-4-1 穩態分析 67
3-4-2 瞬態分析 70
第四章 翹曲分析 75
4-1 建立有限元素模型 76
4-2 翹曲分析流程 77
4-2-1 基本假設 78
4-2-2 設定邊界條件 79
4-2-3 考慮固化收縮效應與降溫收縮效應之翹曲分析 81
第五章 結論與展望 84
5-1 結論 84
5-2 展望 86
參考文獻 88
索引 i
自述 viii
參考文獻 [1] Rao R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill Companies, Inc., 1995.
[2] 葉俊吾, 運用類神經網路建構SMT錫膏印刷製程品質管制系統, 碩士論文, 國立成功大學製造研究所, 2002.
[3] 陳立生, “薄型塑膠IC構裝翹曲問題探討”, 工業材料,114期,113~117頁,1996.
[4] Y. S. Chang, Study of isothermal and Isobaric Volume Shrinkage for Epoxy Molding Compound, Ph.D. Thesis, Dept. of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2005.
[5] T. N. Tsai, “Thermal parameters optimization of a reflow soldering profile in printed circuit board assembly: A comparative study,” Applied Soft Computing, vol. 12, No. 8, pp. 2601-2613, 2012.
[6] K. Oota and K. Shigeno, “Development of Molding Compound for BGA,” 45th Electronic Component Conference, pp. 78-85, 1995.
[7] King L. Tai, “System-In-Package (SIP): Challenges and Opportunities,” In Proceedings of ASP-DAC 2000, Yokohama, Japan, pp. 191-196, 2000.
[8] Fujitsu Company, “Technical analysis Rapidly Advancing System-in-Package Fabrication Technology,” Fujitsu Semiconductor, vol. 20, No. 3, pp. 1-9, 2002.
[9] H. H. Manko, Soldering Handbook for Printed Circuits and Surface Mounting, Van Nostand Reinhold, New York, 1995.
[10] N. C. Lee, “Optimization the reflow profile via defect mechanism analysis,” Soldering and Mounting Technology, vol. 11, pp. 13~20, 1999.
[11] A. Tavarez and J. E. Gonzalez, “Modeling the thermal behavior of solder paste inside reflow ovens,” Journal of Electronic Packaging, vol. 125, pp. 335-46, 2003.
[12] Y. S. Son and J. Y. Shin, “Thermal response of electronic assemblies during forced convection-infrared reflow soldering in an oven with air injection,” JSME International Journal Series B Fluids and Thermal Engineering, vol. 48, pp. 865-73, 2005.
[13] L. Shen, M. Wang, Y. He, F. Lam Tim and Y. Q. Jiang, “Reflow profile simulation by finite element method for a BGA package,” Electronic Packaging Technology, 2005 6th International Conference on, 30 August-2 September, pp. 419-22, 2005.
[14] M. Inoue and T. Koyanagawa, “Thermal simulation for predicting substrate temperature during reflow soldering process,” Proceedings 55th Electronic Components and Technology Conference, 31 May-3 June, vol. 1, pp. 1021-1026, 2005.
[15] N. Van Steenberge, P. Limaye, G. Willems, B. Vandevelde and I. Schildermans, “Analytical and finite element models of the thermal behavior for lead-free soldering processes in electronic assembly,” Microelectronics Reliability, vol. 47, pp. 215-22, 2006.
[16] B. Ille´s and G. Harsa´nyi, “3D thermal model to investigate component displacement phenomenon during reflow soldering,” Microelectronics Reliability, vol. 48, pp. 1062-1068, 2008.
[17] B. Ille´s, “Distribution of the heat transfer coefficient in convection reflow oven,” Applied Thermal Engineering, vol. 30, pp. 1523-1530, 2010.
[18] B. Ille´s, “Measuring heat transfer coefficient in convection reflow ovens,” Measurement, vol. 43, pp. 1134-1141, 2010.
[19] Chun-Sean Lau and M.Z. Abdullah, “Three-dimensional thermal investigations at board level in a reflow oven usingthermal-coupling method,” Soldering and Surface Mount Technology, vol. 24, pp. 167-182, 2012.
[20] H.H. Chiang, C. A. Hieber and K. K. Wang, “A Unified Simulation of the Filling and Postfilling Stages in Injection Molding. Part I: Formulation,” Polymer Engineering and Science, vol. 31, pp. 116-124, 1991.
[21] U. F. Gonzalez, Shen and C. Cohen, “Rheological Characteristic of Fast-Reaction Thermosets throught Spiral Flow Experiments,” Polymer Engineering and Science, vol. 32, pp. 172-184, 1992.
[22] L. S. Turng and V. W. Wang, “On the Simulation of Microelectronic Encapsulation with Epoxy Molding Compound,” Journal of Reinforced Plastic and Composites, vol. 12, pp. 506-519, 1993.
[23] L. T. Nguyen, “Reactive Flow Simulation in Transfer Molding of IC Packages,” 43rd Electronic Components Conference, pp. 375-390, 1993.
[24] W. B. Young, “Three Dimensional Nonisothermal Mold Filling Simulations in Resin Transfer Molding,” Polymer Composites, vol. 15, pp. 118-127, 1994.
[25] M. K. Kang, “Simulation of Mold Filling Process During Resin Transfer Molding,” Journal of Material Process and Manufacturing Science, vol. 3, pp. 297-313, 1995.
[26] R.Y. Chang, W.H. Yang, S.J. Hwang and F. Su, “Three-Dimensional Modeling of Mold Filling in Microelectronics Encapsulation Process,” IEEE Transactions on Components and Packaging Technologies, vol. 27, pp. 200-209, 2004.
[27] A. C. Loos and G. S. Springer, “Curing of the Epoxy Matrix Composites,” Journal of Composite Materials, vol. 17, pp. 135-169, 1983.
[28] G. S. Springer, “Resin Flow During the Curing of Fiber Reinforced Composites,” Journal of Composite Materials, vol.16, pp. 400-410, 1982.
[29] R. L. Frutiger, “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Polymer Engineering and Science, vol. 26, pp. 243-254, 1986.
[30] Y. S. Chang, S. J. Hwang, H. H. Lee, and D. Y. Hwang, “Study of P-V-T-C Relation of EMC,” ASME Journal of Electronic Packaging, vol. 124, pp. 371-373, 2002.
[31] S. Timoshenko, “Analysis of Bi-Material Thermostats,” Journal of the Optical Society of America, vol. 11, pp. 233-255, 1925.
[32] D. R. Olsen and H. M. Berg, “Properties of Die Bond Alloys Relating to Thermal Fatigue,” IEEE Components, Hybrids and Manufacturing Technology, vol. 12, pp. 257-263, 1979.
[33] T. Y. Pan and Y. H. Pao, “Deformation in Multilayer Stacked Assemblies,” ASME Journal of Electronic Packaging, vol. 112, pp. 30-34, 1990.
[34] P. M. Hall, “Thermal Expansivity and Thermal Stress in Multilayered Structures,” Thermal Stresses and Strain in Microelectronics Packaging, edited by J.H. Lau, Van Nostrand Reinhold, pp. 79-94, 1993.
[35] S. W. Lee, “Effect of Encapsulation Volume on the Coplanarity of Plastic Ball Grid Array Package,” The First Asia-Pacific Conference on Material and Processes in IC Encapsulation, pp. 17-1-17-4, 1996.
[36] E. Suhir, “Predicted Residual Bow of Thin Plastic Packages of Integrated Circuit Devices,” ASME Journal of Electronic Packaging, vol. 114, pp. 467-470, 1992.
[37] E. Suhir and L. T. Manzione, “Predicted Bow of Plastic Packages Due to the Nonuniform Through-Thickness Distribution of Temperature,” ASME Journal of Electronic Packaging, vol. 114, pp. 329-335, 1992.
[38] A. Quach and R. Simha, “Pressure‐Volume‐Temperature Properties and Transitions of Amorphous Polymers; Polystyrene and Poly (orthomethylstyrene),” Journal of Applied Physicals, vol. 42, pp. 4592-4605, 1971.
[39] Zoller, P. Bolli, V. Pahud and H. Ackermann, “Apparatus for measuring pressure-volume-temperature relationships of polymers to 350 degrees C and 2200kg/cm2,” Review of Scientific Instruments, vol. 47, pp. 948-952, 1976.
[40] T. Nishimura and Y. Nakagawa, “Analysis of stress due to shrinkage in a hardening process of liquid epoxy resin,” Heat Transfer-Asian Research, vol. 31, pp. 194-211, 2002.
[41] S. J. Hwang, and Y. S. Chang, “Isobaric Cure Shrinkage Behaviors of Epoxy Molding Compound in Isothermal State,” Journal of Polymer Science: Part B: Polymer Physics, vol. 43, pp. 2392-2398, 2005.
[42] S. J. Hwang, and Y. S. Chang, “P-V-T-C equation for epoxy molding compound,” IEEE Transactions on Components and Packaging Technologies, vol. 29, pp. 112-117, 2006.
[43] L. C. Hong and S. J. Hwang, “Study of warpage due to P-V-T-C relation of EMC in IC packaging,” IEEE Transactions on Components and Packaging Technologies, vol. 27, pp. 291-295, 2004.
[44] B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, New York, Academic Press, 1972.
[45] ANSYS, ANSYS FLUENT User's Guide, ANSYS, Inc., 2011.
[46] M. R. Kamal, “Kinetics and Thermal Characterization of Thermoset Cure,” Polymer Engineering and Science, vol. 13, pp. 59-64, 1973.
[47] R. B. Prime, “Differential Scanning Calorimetry of the Epoxy Cure Reaction,” Polymer Engineering and Science, vol. 13, pp. 365-371, 1973.
[48] K. Dusek and M. Bleha, “Curing of Epoxide Resins: Model Reaction of Curing with Amine,” Journal of Polymer Chemical Ed., vol. 15, pp. 2393-2400, 1977.
[49] M. G. Roger, “The Structure of Epoxy Resin Using NMR and GPC Tehcniques,” Journal of Applied Polymer Science, vol. 16, pp. 1953-1958, 1972.
[50] R. E. Smith, “Epoxy Resin Cure, II FTIR Analysis,” Journal of Applied Polymer Science, vol. 29, pp. 3713-3726, 1984.
[51] M. R. Kamal and M. E. Ryan, “The Behavior of Thermosetting Compounds in Injection Molding Cavities,” Polymer Engineering and Science, vol. 20, pp. 859-867, 1980.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw