進階搜尋


下載電子全文  
系統識別號 U0026-2707201312163600
論文名稱(中文) 以無線感測網路提昇於飛機維修後勤能力之可行性研究
論文名稱(英文) Feasibility Analysis on Performance Enhancement of Aircraft Maintenance Logistics using Wireless Sensor Network
校院名稱 成功大學
系所名稱(中) 航空太空工程學系專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 101
學期 2
出版年 102
研究生(中文) 洪浚祖
研究生(英文) Chun-Tsu Hung
學號 P47001024
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 指導教授-林清一
口試委員-郭仕堯
口試委員-葉泳蘭
中文關鍵字 ZigBee  無線感測網路  機隊管理  計劃性/非計劃性修護及備料 
英文關鍵字 ZigBee  Wireless sensor Network  fleet management  planned/ unplanned maintenance action  logistics supplement 
學科別分類
中文摘要 無線區域網路技術日趨成熟,無線感測網路(Wireless Sensor Network)傳輸為現代人生活提供極佳之便利性及動態資料傳輸即時性,各飛機製造商未來最大的挑戰即開發設計航空器妥適監測(Aircraft Health Monitoring)系統,針對各次系統或組件做即時監控並提昇預防性修護效益及大幅降低維修成本。本論文研究以ZigBee無線傳輸技術及其豐富的網路拓璞效能,應用於軍用航空器上各重要系統運轉動態即時監測及資料綜整,將即時監控的系統或裝備資訊回傳至監控端之可行性。此外,後勤維修人員可依據所獲得各項系統運作參數,於短時間內判斷飛機各系統及其組件之妥適情況,以提昇主動性預防性修護作業成效。藉由將系統參數綜整並建置資料庫後,亦可作為日後機隊管理及計劃性/非計劃性修護備料之參據。
英文摘要 The wireless technology becomes riper day by day. The Wireless Sensor Network (WSN) makes consumers daily life more convenient and providing dynamic data transmission real-time. The major challenge of manufacturers is designing a Wireless Sensor Network in the specific sub-system of Aircraft Health Monitoring. This thesis tries to adopt ZigBee and wireless transmission technology and their rich network topology performance to apply to the dynamic real-time monitoring of critical systems on military aircraft operation and system operation data collection. In addition, maintenance group could access components and critical systems of aircraft in a short period of time by monitoring data. The implementation of the proposed system operation with database can also support fleet management on planned/unplanned maintenance action and logistics supplement.
論文目次 目 錄
摘要...................................................I
Abstract..............................................II
誌謝...................................................III
目錄...................................................IV
圖目錄..................................................VII
表目錄..................................................X
第一章緒論...............................................1
1.1研究背景與動機.........................................1
1.2研究目的..............................................5
1.3研究範圍與限制.........................................5
1.3.1研究範圍............................................5
1.3.2研究限制............................................6
1.4研究架構與流程.........................................7
第二章文獻回顧與探討.......................................9
2.1國內外文獻回顧.........................................9
2.2 ZigBee技術簡介......................................14
2.2.1 ZigBee頻率範圍....................................14
2.2.2 ZigBee無線技術特性.................................15
2.2.3 ZigBee Stack堆疊技術..............................15
2.3 ZigBee裝置與網路拓璞類型..............................24
2.3.1 ZigBee網路裝置....................................24
2.3.2 ZigBee拓璞類型....................................25
2.4 ZigBee網路連線模式...................................26
2.4.1建立Personal Area Network Coordinator(PAN_Coordinator).......................................26
2.4.2選擇PAN_ID及協調者短址...............................26
2.4.3選擇射頻(Radio Frequency,RF)........................27
2.4.4啟動網路............................................27
2.4.5設備加入網路........................................27
第三章WSN感測系統規劃.....................................29
3.1場面接收系統運作架構規劃................................29
3.1.1場面接收端網路拓璞架構................................29
3.1.2節點資料流傳輸方式...................................30
3.1.3地面接收節點功能定義................................32
3.1.4 地面接收節點系統規劃................................33
3.1.5資料封包...........................................37
3.1.6接收節點部署........................................39
3.2機載系統規劃..........................................44
3.2.1自原診斷系統截取資料...................................45
3.2.2另行佈建機上感測節點.................................47
3.3飛機端與地面接收端節點傳輸..............................51
第四章WSN感測系統可行性評估................................56
4.1 WSN系統可建置之感測功能................................56
4.1.1溫度感測............................................57
4.1.2濕度感測............................................58
4.1.3轉速值感測..........................................59
4.1.4壓力值感測..........................................59
4.2 WSN網路架構與佈署效益..................................61
4.2.1資料傳輸聚集架構.....................................61
4.2.2感測網路傳輸效益與能源耗損限制分析......................65
4.3 WSN網路數據傳輸流量管制分析............................71
4.4 WSN節點佈建限制因素..................................73
4.4.1網路數據傳輸速率與距離...............................73
4.4.2系統失效容錯能力....................................74
4.4.3 耗電量...........................................75
4.4.4系統可擴充性.......................................76
4.4.5硬體與工作環境限制..................................77
4.5 WSN節點保密與安全功能................................78
第五章 結論.............................................82
參考文獻................................................86

圖目錄
圖1.1.1 維修概念演進示意圖.................................3
圖1.1.2智慧塵架構圖.......................................4
圖1.1.3研究範圍說明示意圖..................................6
圖1.4.1研究方法與流程架構圖.................................8
圖2.1.1 ZigBee 無線技術應用於自走車的影像追蹤與影像傳輸.......10
圖2.1.2EATON公司開發之ZigBee-485及232無線系統模組..........11
圖2.1.3 EATON ZigBee無線系統模組應用於太陽能發電模組數據傳輸..12
圖2.1.4傳統商用航空器飛操系統感測器裝置位置示意圖..............13
圖2.2.1 ZigBee堆疊協定層示意圖............................16
圖2.2.2通訊頻道頻譜示意圖..................................17
圖2.2.3 PHY層框架結構圖...................................17
圖2.2.4 Super Frame超級訊框架構圖.........................18
圖2.2.5應用層與ZDO管理層示意圖.............................19
圖2.2.6 MAC Command Frame 框架示意圖.....................22
圖2.2.7 Data Frame 框架示意圖............................22
圖2.2.8 Beacon Frame 框架示意圖..........................23
圖2.2.9 Acknowledge Frame 框架示意圖.....................23
圖2.3.1 ZigBee 網路拓璞(network topology)類型............25
圖2.4.1 ZigBee網路建立流程圖..............................26
圖2.4.2 ZigBee節點資料傳輸示意圖..........................28
圖3.1.1 Mesh網路訊號傳送路徑.............................29
圖3.1.2(1)為對協調者傳輸資料信標啟動模式....................31
圖3.1.2(2)為對協調者傳輸資料信標非啟動信標模式...............31
圖3.1.3自協調者傳輸資料模式...............................32
圖3.1.4 地面接收系統運作方塊圖............................34
圖3.1.5 動態資料監控與下載邏輯示意圖.......................34
圖3.1.6 WSN資料傳輸封包結構..............................37
圖3.1.7 封包檔頭設計架構.................................38
圖3.1.8 埋地式接收節點與X-Bee元件示意圖....................41
圖3.1.9 立桿式設置接收節點與天線場型示意圖..................41
圖3.1.10某機場機庫間距與節點無線電信號傳輸示意圖..............42
圖3.1.11 某機場停機坪及跑道起飛端加溫坪、落地端加溫坪節點佈建...43
圖3.1.12 某基地停機坪及跑道起飛端加溫坪、落地端加溫坪節點佈建...44
圖3.2.1 機載端節點佈建與資料參數截取規劃.....................45
圖3.2.2 自機載中央控制電腦將次系統診斷資料輸出示意圖...........46
圖3.2.3 感測器及控制單元與X-Bee整合之元件...................48
圖3.2.4 機載端另行佈建感測節點(node)模型示意圖...............49
圖3.2.5 飛機端另行佈建節點星狀叢集網路模型示意圖..............50
圖3.2.6 飛機端節點資料傳輸與通訊時序示意圖...................51
圖3.3.1 飛機端與地面端感測節點鏈結及資料傳輸流程..............53
圖3.3.2 飛機端與地面接收端節點位置圖........................54
圖3.3.3地面接收端節點無線電可涵蓋範圍示意圖..................55
圖4.1.1無線感測網路可建置之感測功能示意圖....................57
圖4.1.2崁入式系統概念系統方塊示意圖.........................60
圖4.2.1 鏈狀節點架構示意圖................................62
圖4.2.2 叢集式節點架構示意圖..............................64
圖4.2.3 無線異質叢集式架構環境圖...........................65
圖4.2.4 資料傳傳能源耗損解決方法...........................67
圖4.2.5 資料聚集節點負載過大解決方法........................68
圖4.2.6 傳送距離能源耗損解決方法...........................69
圖4.3.1封包丟棄肇因......................................71
圖4.3.2封包丟棄解決方法...................................72
圖4.4.1 節點佈建限制因素與關鍵因子..........................73
圖4.5.1 ZigBee Security Stack..........................79
圖4.5.2 ZigBee網路新增節點加密認證機制......................80
圖5.1 無線感測網路應用於航機狀況監控.........................82
圖5.2 無線感測系統用於飛操系及發動系監控與信號傳輸.............84

表目錄
表2.1.1 現今無線傳輸技術規格比較表..........................9
表2.1.2 ZigBee頻率範圍及傳輸速率與調變技術.................14
表3.1.1 終端節點PAN_ID編碼表.............................35
表3.1.2 空軍某機場地面接收系統節點規劃統計表.................36
表3.1.3 電池容量與使用壽命時間關係.........................39
表3.1.4 傳輸距離與功率消耗測試結果.........................40
表3.2.1 F-16型機各系統故障代碼表..........................47
參考文獻 參考文獻
[1] ZigBee Alliance, URL:http://www.zigbee.org/en/index.asp.
[2] ZigBee Alliance, ZigBee Specification, Version 1.0[R13], December 2006.
[3]林國煌(民97年6月) ,ZigBee無線技術於影像追蹤與影像傳輸之設計
與應用,國立虎尾科技大學。
[4] EPROTEK智慧型停車導覽系統方案,台北市:昇暉能源科技有限公司。
http://www.geoprotek.com。
[5]李匯宗(民97年1月)。設計與實作一輛具無線傳輸能力之多功能自走車。
論文發表於國立中央大學資訊工程研究所。
[6] R. K.Yedavalli, R. K. Belapurkar, "Application of wireless sensor networks to aircraft control and health management system", Department of Mechanical and Aerospace Engineering, Ohio State University, 2011.
[7] IEEE (1999) Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band, IEEE standard 802.11b.
[8] 郭恆助(民94年7月),基於ZigBee協定之無線感測網路時間同步機制,碩士論文,國立成功大學資訊工程學系研究所。
[9] Texas Instruments, http://www.ti.com/Isds/Ti/analog/zigbee.page
[10] XBee, April 2013, available from website: Http://www.digi.com/
on-site-services/
[11]盛暘科技股份有限公司(民95),ZigBee實驗模組手冊。台北市:盛暘科技股份有限公司。
[12] J. Wu, S. F. Yuan, G. Y. Zhou, S. Ji, Z. L. Wang, Y. Wang, " Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System", June , 2009.
[13] IEEE-TG15.4,"Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)", IEEE Standards for Information Technology, 2003.
[14] X. Liu, A. Goldsmith. Wireless network design for distributed control, Proceedings of the IEEE Conference on Decision and Control. New York: IEEE, 2004: 2823–2829.
[15] J. Yick, B. Mukherjee, D. Ghosal, “Wireless sensor network survey,” Computer Networks, Vol. 52, No. 12, pp. 2292-2330, August 2008.
[16] H. S. Ahn, K. H. Ko, “Simple Pedestrian Localization Algorithms Based on Distributed Wireless Sensor Networks,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 10, pp. 4296-4302, October 2009.
[17] J.Y. Jung, J. W. Lee, "ZigBee Device Access Control and Reliable Data Transmission in ZigBee Based Health Monitoring System", ICACT 10th International Conference on Advance Communication Technology, Vol.1, pp. 795-797,2008.
[18] S. Lindsey and C. S. Raghavendra, "PEGASIS: Power-Efficient Gathering in Sensor Information Systems", IEEE Aerospace Conference, pp. 1-6, March 2002.
[19] T. Kaur and J. Baek, “A Strategic Deployment and Cluster-Header Selection for Wireless Sensor Networks,” IEEE Transactions on Consumer Electronics, Vol. 55, No.4, pp. 1890-1897, November 2009.
[20] G. Venkataraman, S. Emmanuel and S. Thambipillai, “Energy-Efficient Cluster-Based Scheme for Failure Management in Sensor Networks,” IET Communications, Vol. 2, Issue 4, pp. 528-537, April 2008.
[21] E. Sakhaee and A. Jamalipour, “Stable Clustering and Communications in Pseudo-linear Highly Mobile Ad Hoc Networks, ”IEEE Transactions on Vehicular Technology, Vol. 57, No. 6, pp. 3769-3777, November 2008.
[22] H. H. Yen and C. L. Lin, “Integrated Channel Assignment and Data Aggregation Routing Problem in Wireless Sensor Networks”, IET Communications, Vol. 3, Issue. 5, pp. 784–793, May 2009.
[23] S. U. Hashmi, H. T. Mouftah, N. D. Georganas, “Achieving Reliability Over Cluster-Based Wireless Sensor Networks Using Backup Cluster Heads,” Global Telecommunications Conference, pp. 1149-1153, November 2007.
[24] W. B. Heinzelman, A. Chandrakasan and H. Balakrishnan, “An Application-Specific Protocol Architecture for Wireless Micro-sensor Networks, ” IEEE Transactions Wireless Communications, Vol. 1, No. 4, pp. 660-670, October 2002.
[25] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks,” The 33rd Annual Hawaii International Conference on System Sciences, Vol. 2, pp. 1-10, January 2000.
[26] A. Boukerche, A. Martirosyan, R. Pazzi, “An inter-cluster communication based energy aware and fault tolerant protocol for wireless sensor networks, ”ACM Transaction on Mobile Network Application, Vol. 13, No. 6, pp. 614-626, December 2008.
[27] M. W. Park, J. Y. Choi, Y. J. Han, T. M. Chung, “An Energy Efficient Concentric Clustering Scheme in Wireless Sensor Networks,” Fifth International Joint Conference on INC, IMS and IDC, pp.58-61, August 2009.
[28] M. H. Yaghmaee, D. Adjeroh, “Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks,” Computer Networks, Vol.53, Issue 11, pp. 1798-1811, 2009.
[29]朱鴻棋與紀孟宏(民100年)。發表之"在無線異質感測網路下具能源感知之重建叢集機制。朝陽科技大學,資訊與通訊系。
[30] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey," Broadband and Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
[31] R. Cragie, "Zigbee Security," Zigbee Alliance, 2009. Http://docs.zigbee.org/zigbee.doc
[32] Siobhan Wagner, "Wireless sensors could reduce aircraft maintenance costs," the ENGINEER, August2010. http://www.theengineer.co.uk
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw