進階搜尋


下載電子全文  
系統識別號 U0026-2707201209504600
論文名稱(中文) 人工紅樹林濕地淨化海水養殖業廢水之可行性評估
論文名稱(英文) Assessment of the feasibility in using constructed mangrove wetland to clean mariculture effluent
校院名稱 成功大學
系所名稱(中) 生命科學系碩博士班
系所名稱(英) Department of Life Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 蘇永銘
研究生(英文) Yung-Ming Su
學號 L58921064
學位類別 博士
語文別 中文
論文頁數 90頁
口試委員 召集委員-高文媛
口試委員-林惠真
口試委員-許秋容
口試委員-黃良銘
指導教授-李亞夫
中文關鍵字 人工濕地  水流停駐時間  生長  光合色素含量  紅樹林  海水養殖廢水  淹水逆境  葉面積 
英文關鍵字 constructed wetland  growth  hydraulic residence time  leaf area  mangrove  mariculture wastewater  photosynthetic pigment content  waterlogging stress 
學科別分類
中文摘要 人工濕地被認為是一種對環境友善且經濟的污水處理工具。本研究探討台灣南部原生的三種紅樹林苗,包括海茄苳 (Avicennia marina (Forsk.) Vierh., Grey mangrove)、紅海欖 (Rhizophora stylosa Griff., Red mangrove)、及欖李 (Lumnitzera racemosa Willd., Black mangrove),種植在不同水流停駐時間 (Hydraulic Residence Time, HRT) 的情況下的生長、形態、葉子光合色素含量、及處理高鹽分海水養殖廢水之效率。
本研究共設置45個小型表面流人工濕地 (含3種植物 × 4種處理 + 3組未種植物的淹水組,共15組,每組3重複)。經10個月期間,實驗結束時,三種紅樹林苗的存活率皆接近100%,但在生長、形態、及光合色素含量上,卻受到HRT處理 (0.5天、1天、2天、及不蓄水) 的影響而有差異。海茄苳及欖李在苗高度增加的百分比率 (the percent change in stem height)、根生物量 (root biomass)、莖生物量 (stem biomass)、葉生物量 (leaf biomass)、淨初級生產量 (net primary production )、及相對成長率 (relative growth rate) 等參數均以HRT 0.5天組最高,紅海欖的根、莖、葉等生物量及總生物量在不同處理之間並沒有顯著差異,但在苗木高度增加的百分比率、淨初級生產量、及相對成長率則以不蓄水組最高。三種植物的百分比葉數增加率 (the percent change in leaf number) 及葉面積 (leaf area) 和葉面積比 (leaf area ratio) 均隨HRT增加而減少。海茄苳及紅海欖的比葉面積 (specific leaf area) 在不同處理組之間沒顯著差異,但是欖李則是隨HRT增加而減少。
實驗中期,海茄苳的葉綠素a (chlorophyll a)、葉綠素b (chlorophyll b)、及總葉綠素 (total chlorophyll) 含量均以HRT 0.5天組最低,而紅海欖及欖李則皆以2天組最低,三種植物的葉綠素a/b值均為不蓄水組最高、0.5天組次之、2天組最低。實驗結束時,海茄苳及紅海欖在各處理組的所有葉綠素含量均沒有顯著差異。欖李則是除了葉綠素b在各HRT組之間沒顯著差異外,葉綠素a、總葉綠素、葉綠素a/b值皆為2天組顯著小於0.5天組及以不蓄水組。
在水質處理效果方面,三種紅樹林人工濕地成功去除以下污染物:懸浮固體物 (suspended solids) 為15.40 ± 2.16% (平均值 ± 標準誤差)、五天生化需氧量 (5-day Biochemical oxygen demand) 為18.86 ± 2.55%、氨態氮 (ammonium) 為32.51 ± 3.39%、硝態氮加亞硝態氮 (nitrate + nitrite) 為21.17 ± 2.77%、及總磷為23.11 ± 1.23%。栽種植物處理組較未栽種植物組,對總懸浮固體物、五天生化需氧量、及總磷均有較好的去除效率。雖然三種物種之間對污染的去除效率沒有顯著差異,但不管有無種植植物,大部分2天組均比0.5天組有較高污染去除效率,但如考量整體污染物質之移除量,則以0.5天組有較高的負荷移除量 (每天每平方公尺污染去除量)。
本研究結果顯示,處在海水養殖廢水的情形下,海茄苳及欖李的成長較紅海欖好;然而,三種植物的成長均會隨水流停駐時間的增長而降低。另一方面,水流停駐時間愈久,廢水污染去除效率愈好,但負荷移除量則相反。因此在台灣西南部紅樹林人工濕地的設計,應以種植海茄苳、欖李、並以0.5天的水流停駐時間來操作較適合,唯需定期將水排乾,以減輕淹水對紅樹林所造成的影響。
英文摘要 Constructed wetlands represent an environmentally and economically friendly tool in wastewater treatment and for controlling water pollution. This study aimed to investigate the growth, morphology, and leaf photosynthetic pigment content of native mangroves in Taiwan, including grey mangroves (Avicennia marina (Forsk.) Vierh.), red mangrove (Rhizophora stylosa Griff.), and black mangroves (Lumnitzera racemosa Willd.), treated with different hydraulic residence times (HRT: 0.5, 1, and 2 days and one drained treatment as control), to clean mariculture effluent, and their pollutant removal efficiency.
The experiments set up 45 microcosms planted in monoculture over a ten month period. The seedlings of all three mangrove species survived under all mariculture wastewater treatments, but longer HRTs induced greater stress and suppressed mangrove growth. For A. marina and L. racemosa, the percent change in stem height, stem biomass, leaf biomass, root biomass, net primary productivity (NPP), and relative growth rate (RGR) were highest with the 0.5-d HRT treatment. For R. stylosa, none of the components of biomass showed any significant difference among treatments. However, the percent change in stem height, NPP, and RGR were highest with the drained treatment. The percent change in leaf number, leaf area, and leaf area ratio of the three mangrove species decreased with increasing HRT. The specific leaf area showed no significant difference among all treatments for A. marina and R. stylosa. However, this parameter declined as HRT increased in the case of L. racemosa.
At the intermediate stage of the experimental period, chlorophyll a, chlorophyll b, and total chlorophyll contents were lowest with 2-d HRT treatment for R. stylosa and L. racemosa and with 0.5-d HRT treatment for A. marina. The ratios of chlorophyll a/b in the three species decreased by the greatest extent in the drained treatment, followed by in the 0.5-d, and the least in the 2-d treatment. At the end of the experiment, the chlorophyll contents of A. marina and R. stylosa showed no significant difference among the treatments. For L. racemosa, the chlorophyll a, total chlorophyll contents, and chlorophyll a/b ratio were significantly lower with the 2-d HRT treatment than with the drained and 0.5-d HRT treatments.
The all mangrove microcosms removed pollutants from the mariculture effluent with efficiencies of 15.40 ± 2.16% (mean ± SE) for SS, 18.86 ± 2.55% for BOD5, 32.51 ± 3.39% for NH4+-N, 21.17 ± 2.77% for NOx--N, and 23.11 ± 1.23% for TP. Compared with the unplanted group, all of the three planted groups consistently presented greater efficiencies for SS, BOD5, and TP removal. However, no species displayed consistently superior performance in removing all pollutant parameters. Microcosms operating at 2-d HRT exhibited higher removal efficiency for each pollutant than those operating at 0.5-d HRT, but operating at 0.5-d HRT exhibited better mass removal rate for pollutant than those operating at 2-d HRT.
The results of the study indicate that under waterlogging conductions, the growth of A. marina and L. racemosa was better than that of R. stylosa, but three plants all decreased with increasing HRT. The longer HRT the better pollutant removal efficiency, but the mass removal rate was reverse. Therefore, growing A. marina and L. racemosa with a 0.5-d HRT regime and periodic draining of wastewater is the most appropriate design for the management of constructed mangrove wetland in southern Taiwan.
論文目次 摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
一、緒論 1
1.1 前言 1
1.2 紅樹林生理生態的特點 2
1.3 淹水對紅樹林的影響研究 4
1.3.1 淹水對紅樹林生長之影響 5
1.3.2 淹水對紅樹林生理之影響 6
1.4 人工濕地簡介 8
1.4.1 人工濕地的構造類型及水流停駐時間 8
1.4.2 人工濕地水質淨化機制及原理 10
1.4.3 植物的根區效應 13
1.5 紅樹林人工濕地淨化水質研究 14
1.6 研究動機與目的 15
二、材料與方法 17
2.1 實驗場址及苗木栽培 17
2.2 實驗物種的特性及分布 17
2.3小型濕地及實驗系統操作 19
2.4苗木形質生長變化 21
2.4.1 苗高、苗直徑、葉數生長 21
2.4.2 葉、莖、根部乾物重 22
2.4.3 葉部參數測定 22
2.4.4 生長分析 23
2.5 植物葉子光合色素含量分析 23
2.6 水質採樣及分析 24
2.6.1現場檢測 24
2.6.2實驗室檢測 24
2.6.2.1 總懸浮固體物 (SS) 25
2.6.2.2 五天生化需氧量 (BOD5) 25
2.6.2.3 總磷 (TP) 25
2.6.2.4氨態氮 (NH+4-N)、硝態氮 (NO-3-N)、亞硝態氮 (NO-2-N) 26
2.6.3水質與處理效益評估 26
2.7 統計分析方法 27
三、結果 28
3.1泥土氧化還原電位 28
3.2 植物生長及形態 28
3.2.1氣生根之生長及苗存活情形 28
3.2.2苗高及苗直徑生長 29
3.2.3 植物生長及形態多變量變異數分析 31
3.2.4植株各部位生物量 31
3.2.5淨初級生產量 32
3.2.6相對成長率 34
3.2.7生物量分配 35
3.2.8葉子數量的變化 36
3.2.9 葉形態參數的變化 37
3.3葉子光合色素含量 40
3.4水質處理效應 42
3.4.1 水溫、塩度、酸鹼度、溶氧、導電度 42
3.4.2 總懸浮固體物 (SS) 及五天生化需氧量 (BOD5) 的去除 49
3.4.3 氮 (NH4+-N, NOx--N) 及總磷 (TP) 的去除 54
四、討論 60
4-1 淹水處理對植物之影響 60
4-2 HRT處理對植物之影響 62
4.3 紅樹林濕地處理水質效果 65
4.4人工濕地物種之選擇 69
五、結論 75
六、參考資料 77
附錄:水流停駐時間設計及計算方式 90
參考文獻 American Public Health Association (APHA), 1995. Standard Methods for the Examination of Water and Wastewater. APHA, AWWA, and WPCF, Washington, DC.
Anderson, J. M., Chow, W. S. and Goodchild, D. C., 1988. Thylakoid membrane organization in sun/shade acclimation. Australian Journal of Plant Physiology 15:11–26.
Anne, C. and Louise J., 2002. Fisheries Guidelines for Mangrove Nursery Construction, Propagation and Planting. Queensland Fisheries Service, Department of Primary Industries.
Avnimelech, Y., Mozes, N., Diab, S., Kochba, M., 1995. Rates of organic carbon and nitrogen degradation in intensive fish ponds. Aquaculture 134: 211-216.
Bhosale, L. J. and Mulik, N. G., 1991. Strategies of seed germination in mangroves. In: David, N. S. and Mohammed, S. (Eds.) Proceedings on International Seed Symposium, Jodhpur, India, pp. 201‐205.
Boonsong, K., Piyatiratitivorakul, S. and Patanaponpaiboon, P., 2003. Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment. Water Science and Technology 48: 257-266.
Cardona-Olarte, P., Twilley, R. R., Krauss, K. W. and Rivera-Monroy, V., 2006. Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia 569: 325-341.
Chen L. Z., Wang, W. Q. and Lin P., 2005. Photosynthetic and physiological responses of Kandelia candel (L.) Druce seedlings to duration of tidal immersion in artificial seawater. Environmental and Experimental Botany 54: 256–266.
Chen, L. Z., Lin, P. and Wang, W. Q., 2006. Mechanisms of mangrove waterlogging resistence. Acta Ecologica Sinica 26: 586-593. (in Chinese, with English Abstract)
Chu, H. Y., Chen, N. C., Yeung, M. C., Tam N. F. Y. and Wong Y. S. 1998., Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater. Water Science and Technology 38: 361-368.
Conn, R. M. and Fiedler, F. R., 2006. Increasing hydraulic residence time in constructed stormwater treatment wetlands with designed bottom topography. Water Environment Research 78: 2514-2523.
Das, A. B., Parida, A., Basak, U. C. and Das, P., 2002. Studies on pigment, proteins and photosynthetic rates in some mangroves and mangrove associates from Bhitarkanika, Orissa. Marine Biology 141: 415-422.
DeBusk, W. F., 1999. Wastewater Treatment Wetlands: Applications and Treatment Efficiency. Soil and Water Science Department, University of Florida.
Ellison, A. M. and Farnsworth, E. J., 1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112: 435-446.
FAO, 2007. The world’s mangroves 1980-2005. FAO Forestry Paper 153.
Field, C. D., 1998. Rehabilitation of mangrove ecosystems: An overview. Marine Pollution Bulletin 37: 383-392.
Gautier, D., Amador, J. and Newmark, F., 2001. The use of mangrove wetland as a biofilter to treat shrimp pond effluents: preliminary results of an experiment on the Caribbean coast of Colombia. Aquaculture Research 32: 787-799.
Gersberg, R.M., 1984. The removal of heavy metals by artificial wetlands. In: roceedings Water Reuse Symposium, III. Vol. 2. AWWA Research Foundation, 639 pp.
He, B. Y. and Lai, T. H., 2007. Critical tidal level for forestation with hypocotyls of Rhizophora stylosa (Griff.) along Guangxi coast of China. Chinese Journal of Applied Ecology 18: 1702-1708. (in Chinese, with English Abstract)
He, B. Y., Lai, T. H., Chen, J. F. and Qiu, G. L., 2007a. Studies of the tolerance of Avicennia marina and Aegiceras corniculatum to seawater immersion in Guangxi, China. Acta Ecologica Sinica 27: 1130-1138. (in Chinese, with English Abstract)
He, B. Y., Lai, T. H., Fan, H. Q., Wang, W. Q. and Zheng, H. L., 2007b. Comparison of flooding-tolerance in four mangrove species in a diurnal tidal zone in the Beibu Gulf. Estuarine Coastal and Shelf Science 74: 254-262.
Hogarth, P., 2007. The Biology of Mangroves and Seagrasses. Oxford University Press 280 PP.
Hsueh, M. L. and Lee, H. H., 2000. Diversity and distribution of the mangrove forests in Taiwan. Wetlands Ecology and Management 8: 233-242.
Huang, S., Shih, J. T. and Hsueh, M. L., 1998. Mangroves of Taiwan. Taiwan Endemic Species Research Institute, Nantou, Taiwan.
International Water Association (IWA), 2000. Constructed Wetlands for Pollution Control, Processes, Performance, Design and Operation. IWA Publishing, London.
Jackson, M. B., 1985 Ethylene and responses of plants to soil waterlogging and submergence. Annual Review Plant Physiology 36: 145–174.
Jing, S.R., Lin, Y.F., Lee, D.Y., and Wang, T.W., 2001 Using constructed wetland ystems to remove solids from highly polluted river water. Water Science and Technology: Water Supply 1: 89–96
Jing, S. R., Lin, Y. F., Wang, T.W. and Lee, D. Y., 2002. Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes. Journal of Environmental Quality 31: 690–696.
Jing, Y. X., Ren, Y. L. and Chen, G. Z., 2005. Studies of eco-physiological characteristics of three mangrove species in constructed wetland sewage treatment system. Acta Ecologica Sinica 25: 1612-1619. (in Chinese, with English Abstract)
Jing, Y. X., Li, X. J., Yang, D. J. and Chen, G. Z., 2007. Purifying effect of mangrove constructed wetlands on domestic sewage. Acta Ecologica Sinica 27: 2365-2374. (in Chinese, with English Abstract)
Kadlec, R. H. 1995. Overview : surface flow constructed wetlands. Water Science and Technology 32: 1-12.
Kadlec, R. H., Knight, L. R., Vymazal, J., Brix, H., Cooper, P. and Haberl, R. 2000. Constructed Wetlands for Pollution Control: Processes, Performance, Design and Operation. IWA Specialist Group on Use of Macrophytes in Water Pollution Control, IWA publishing, 155.
Kargi, F. and Dincer, A. R., 1996. Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation. Enzyme Microbial Technology 19: 529-537.
Kathiresan K. and Bingham, B. L., 2001. Biology of mangroves and mangroves ecosystem. Advances in Marine Biology 40: 81-251.
Kitaya, Y., Jintana, V., Piriyayotha, S., Jaijing, D., Yabuki, K., Izutani, S., Nishimiya, A. and Iwasaki, M., 2002. Early growth of seven mangrove species planted at different elevations in a Thai estuary. Trees 16:150-154.
Klomjek, P. and Nitisoravut, S., 2005. Constructed treatment wetland:a study of eight plant species under saline conditions. Chemosphere 58:585-593.
Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H. and Sullivan, J. K., 2006. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569: 311-324.
Krauss, K. W., Lovelock, C. E., Mckee, K. L., Lopez-Hoffman, L., Ewe, S. M. L. and Sousa, W. P., 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89:105-127.
Kuo, S. R., Lin, R. S., Hsu, S. H. and Liang, Y. C., 2000. Effects of watering regimes and soil salinity on the growth and morphology of the mangrove Lumnitzera racemosa. Quarterly Journal of Chinese Forestry 33:217-230. (in Chinese, with English Abstract)
Lai, T. H. and He, B. Y., 2007. Growth and physiological responses of Bruguiera gymnorrhiza seedlings to waterlogging stress. Chinese Journal of Ecology 26: 650-656. (in Chinese, with English Abstract)
Lewis, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24: 403-418.
Lichtenthaler, H. K., 1987. Chlorophylls and carotenoids: the pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.
Lin, Y. F., Jing, S. R., Lee, D. Y. and Wang, T. W., 2002a. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 209: 169–184.
Lin, Y. F., Jing, S. R., Lee, D. Y. and Wang, T. W., 2002b. Removal of solids and oxygen demand from aquaculture wastewater with a constructed wetlands system. Water Environmental Research 74: 136-141.
Lin, Y. F., Jing, S. R. and Lee, D. Y., 2003. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environmental Pollution 123: 107-113.
Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F., Chen, Y. M. and Shih, K. C., 2005. Performance of a constructed wetlands treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environmental Pollution 134: 411-421.
Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F. and Sui, H. Y., 2008a. Management of diffuse pollution from aquaculture farms in Taiwan using constructed wetlands. 12th International Conference on Integrated Diffuse Pollution Management (IWA DIPCON 2008), Thailand.
Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F., Hou, P. C. and Su, Y. M., 2008b. The tolerance of aquatic plants in saline constructed wetland wastewater. The first Mainland-Taiwan conference for constructed wetland. Wuhan, China. (in Chinese, with English Abstract)
Lin, Y. F., Jing, S. R., Lee, D. Y., Chang, Y. F. and Sui, H. Y., 2010. Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture. Water Environmental Research 82: 759-768.
Liu, W. Q., Huang, X. F., Jiang, Z. C., Lin, L. H., Huang, X. and Chen, G. Z., 2005. Impact of mangrove on nutrient salts and phytoplankton in aquaculture system. Marine Environmental Science 24: 12-15. (in Chinese, with English Abstract)
Matthijs, S., Tack, J., Speybroeck, D. and Koedam, N., 1999. Mangrove species zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a preliminary study. Mangrove and Salt Marshes 3: 243-249.
McKevlin, M. R., Hook, D. D. and Rozelle, A. A., 1998. Adaptation of plants to flooding and soil waterlogging. In: Messina, M.G., Conner, W.H. (Eds.), Southern Forested Wetlands: Ecology and Management. Lewis Publishers, Boca Raton, 173pp.
Mitsch, W, J., 1993. Ecological engineering-a cooperative role with the planetary life-support system. Environmental Science 27: 438-455.
Naidoo, G. and Naidoo, S., 1992. Waterlogging responses of Sporobolus vivginicus (L) Kunth. Oecologia 90: 445-450.
Naidoo, G., 2009. Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquatic Botany 90: 184-190.
Naylor, S., Brisson, J., Labelle, M. A. and Comeau, Y., 2003. Treatment of freshwater fish farm effluent using constructed wetlands: the role of plants and substrate. Water Science Technology 48: 215-222.
Nitisoravut, S. and Klomjek, P., 2005. Inhibition kinetics of salt-affected wetland for municipal wastewater treatment. Water Research 39:4413-4419.
Othman, M. A., 1994 Value of mangroves in coastal protection. Hydrobiologia 285: 277-282.
Ou, W. S., 2005. Application of Constructed Wetlands in Domestic Wastewater Treatment and Reuse. PhD. Thesis, NCKU. Tainan. (in Chinese, with English Abstract)
Parida, A. K. and Das, A. B., 2003. Effects of NaCl stress on nitrogen and phosphorus metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Journal of Plant Physiology 161: 921–928.
Parida, A. K. and Jha, B., 2010. Salt tolerance mechanisms in mangroves: a review Trees 24: 199-217.
Peng, Y. G., Chen, G. Z., She, Z. M. and Yin, M., 2004. Mangrove and planting-aquaculture ecological coupling system. Acta Scientiarum Naturalium Universitatis Sunyatsemi. 43: 150-154. (in Chinese, with English Abstract)
Pezeshki, S. R., DeLaune, R. D. and Meeder, J. F., 1997. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experimental Botany 37: 161-171.
Pi, N., Tam, N. F. Y., Wu, Y. and Wong, M. H., 2009. Root anatomy and spatial pattern of radial oxygen loss of eight true mangroves species. Aquatic Botany 90: 222-230.
Sakadevan, K. and Bavor, H. J., 1999. Nutrient removal mechanisms in constructed wetlands and sustainable water management. Water Science and Technology 40: 121–128.
Schulz, C., Gelbrecht, J. and Rennert, B., 2003. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217: 207-221.
Schwartz, M. F. and Boyd, C. E., 1995. Constructed wetlands for treatment of channel catfish pond effluents. Progressive Fish Culturist 57: 255– 267.
Sheue C.R., Liu H.Y., Yong J.W.H., 2003. Kandelia obovata (Rhizophoraceae), a new mangrove species from Eastern Asia. TAXON (AUSTRIA), 52: 287-294
Shimoda, T., Srithong, C. and Aryuthaka, C., 2005. Attempt at purification of effluent and sediment in shrimp aquaculture ponds using mangrove trees. Japan Agricultural Research Quarterly 39: 139-145.
Sindilariu, P. D., Wolter, C. and Reiter, R., 2008. Constructed wetlands as a treatment method for effluents from intensive trout farms. Aquaculture 277: 179-184.
Skelton N. J. and Allaway, W. G., 1996. Oxygen and pressure changes measured in situ during flooding in roots of the Grey Mangrove Avicennia marina (Forsk) Vierh, Aquatic Botany 54: 165–175.
Smith, T. J., 1987. Effect of light and intertidal position on seedling survival and growth in tropical tidal forests. Journal of Experimental Marine Biology and Ecology 110: 133-146.
Snedaker, S. C. and Snedaker, J. G., 1984. The Mangrove Ecosystem: Research Methods. United Nations Educational, Scientific and Cultural Organization. Paris.
Spalding, M., Blasco, F. and Field, C. 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems. UK.
Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kastner, M., Bederski, O., Muller, R.A. and Moormann, H., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances 22: 93-117.
Su, Y. M., Lin Y. F., Jing, S. R., Hou, L. P. C., 2011 Plant growth and the performance of mangrove wetland microcosms for mariculture effluent depuration. Marine Pollution Bulletin 62: 1455-1463.
Taffouo, V. D., Fonkou, T., Kenne, M., Fotsop, O. W. and Amougou, A., 2005. Effects of salinity on growth, water content and distribution of Na+ and K+ in the organs of Avicennia germinans L. seedlings. Cameroon Journal of Experimental Biology 1: 21-25.
Teng, Z. H., Zhi, L., Zong, X. F., Wang, S. G. and He, G. H., 2008. Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling oeroids in rice plants. Acta Agronomica Sinica 34:1662-1666. (in Chinese, with English Abstract)
Tu, T. H., 2005. A Survey on the Distribution and Reservation of Mangroves in Tainan County and City. Master's Thesis, NSYSU. Kaohsiung. (in Chinese, with English Abstract)
USEPA (United States Environmental Protection Agency), 2000. Constructed Wetlands Treatment of Municipal Wastewaters. Office of Research and Development Cincinnati, Ohio.
Visser, E. J. W. and Voesenek, L. A. C. J., 2004. Acclimation to soil flooding-sensing and signal-transduction. Plant and Soil 254: 197-214.
Wong, Y. S., Tam, N. F. Y. and Lan, C. Y., 1997. Mangrove wetlands as wastewater Treatment facility: a field trail. Hydrobiologia 352: 49-59.
Wu, Y., Tam, N. F. Y. and Wong, M. H., 2008a. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetlands microcosm. Marine Pollution Bulletin 57: 727-734.
Wu, Y., Chung, A., Tam, N. F. Y., Pi, N. and Wong, M. H., 2008b. Constructed mangrove wetlands as secondary treatment system for municipal wastewater. Ecological Engineering 34: 137-146.
Yang, Q., Tam, N. F. Y., Wong, Y. S., Luan, T. G., Su, W. S., Lan, C. Y., Shin, P. K. S. and Cheng, S. G., 2008. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin 57: 735-743.
Ye, Y., Tam, N. F. Y. and Wong, Y. S., 2001. Livestock wastewater treatment by a mangrove pot-cultivation system and the effect of salinity on the nutrient removal efficiency. Marine Pollution Bulletin 42: 512-520.
Ye, Y., Tam, N. F. Y., Wong, Y. S. and Lu, C. Y., 2003. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany 49: 209-221.
Ye, Y., Lu, C. Y., Zheng, F. Z. and Tam, N. F. Y., 2004a. Effects of simulated sea level rise on the mangrove Kandelia candel. Acta Ecological Sinica 24: 2238-2244.
Ye, Y., Tam, N. F. Y., Wong, Y. S. and Lu, C. Y., 2004b. Does sea level rise influence propagule establishment, early growth and physiology of Kandelia candel and Bruguiera gymnorrhiza. Journal of Experimental Marine Biology and Ecology 306: 197-215.
Yu, F. J., 2004. A Survey on the Composition and Distribution of Mangroves in Kaohsiung and Pingdong Area. Master's Thesis, NSYSU. Kaohsiung. (in Chinese, with English Abstract)
Zheng K. Z., Chen G. Zheng X. W. and Chen G. Z., 2009. Wastewater treatment with constructed mangrove wetland system: A review. Chinese Journal of Ecology 28: 138-145. (in Chinese, with English Abstract)
Zhu T. and Sikora F. J., 1995. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Water Science Technology 32: 2l9-228.
內政部,2010,國家重要濕地保育計劃100-105年,80頁。
中華民國漁業年報,2008,行政院農業委員會出版 (http://www.fa.gov. tw/eng /statistics/yearbooks/2007ybe.php)。
朱德民,1995,植物與環境逆境,明文書局,380頁。
呂勝由、薛美莉、許再文、陳添財,1999,台灣產五梨跤(紅海欖)分類誌。台灣林業科學 14: 351-354。
林春宗,2005,利用循序批分式薄膜生物反應槽(SBMBR)改善養殖循環水質之研究,嘉南藥理科技大學環境工程與科學系碩士論文。
林益明及林鵰,2001,中國紅樹林生態系統的植物種類、多樣性、功能及其保護,海洋湖沼通報,3:8-16。
林瑩峰,2003,人工濕地技術在國外應用案例的分析與比較,2003年人工濕地水質淨化系統研討會,高雄市。
范貴珠,2007,台南市龍岡河道之紅樹林復育成效探討,台灣林業,33: 13-24。
郭文健、陳盈利、邱盈達,2003,影響人工濕地對污染物去除效率因素之探討,2003年人工濕地水質淨化系統研討會,高雄市。
郭金棟、 陳文俊、 黃重誡,1997,台南縣海岸砂洲變遷分析,中華民國第十九屆海洋工程研討會論文集,台中市。
施上粟、李鴻源、許志揚、油蕙綾,2005,關渡紅樹林植群變遷之衝擊評估,
台灣水利,53: 31-53。
陳明義,1982,紅樹林之特性,中華林學季刊,15: 17-25。
陳桂珠、繆紳裕、黃玉山、譚鳳儀,1996,人工污水中的N在模擬秋茄濕地系統中的分配循環及其淨化效果,環境科學學報,16: 44-50。
陳章波、謝蕙蓮,2003,「91 年度新竹市濱海野生動物保護區生態保育對策及
紅 樹林調查研究」,中央研究院動物研究所執行,新竹市政府委託。
翁義聰、曾瀧水、楊吉壽、邱滿星,1995,植一株生命的樹,大自然季刊,47: 97-104。
荊樹人,2003,人工濕地技術在國內實際應用案例討論與分析,2003年人工濕地水質淨化系統研討會,高雄市。
漁業署,2002,輔導養殖漁業減抽地下水改善地層下陷執行報告,「地下水觀測網整體計畫」及「地層下陷防治執行方案」九十年度成果發表研討會,台北市。
薛美莉,1995,消失中的濕地森林-記臺灣的紅樹林,台灣省特有生物保育中心,南投,台灣。
龔春生及范成新,2010,不同溶解氧水平下湖泊底泥-水界面磷交換影響因素分析,湖泊科學,22: 430-436。
蘇永銘及黃明泉,2003,台南縣紅樹林造林概況,自然保育季刊,42: 24-27。



論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw