進階搜尋


 
系統識別號 U0026-2707201202394300
論文名稱(中文) 深冷急熱法對灰鑄鐵微觀組織與特性之影響研究
論文名稱(英文) Effect of Uphill Quenching on the Microstructure and Properties of FC300
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 林哲緯
研究生(英文) Che-Wei Lin
電子信箱 n16994659@mail.ncku.edu.tw
學號 n16994659
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-李驊登
口試委員-洪廷甫
口試委員-戴子堯
口試委員-吳佳霖
中文關鍵字 灰鑄鐵  安定化  深冷急熱法  深冷處理 
英文關鍵字 Gray Cast Iron  Stabilization  Uphill Quenching  Subzero Treatment 
學科別分類
中文摘要   近年來工具機的發展已朝向高精度及高穩定性發展,因此對工具機的精度以及穩定性要求也日益嚴苛,但使用未安定的灰鑄鐵可能會使工具機的精度在數年後產生不可忽視且無法改善的誤差。本研究針對精密工具機常使用之灰鑄鐵材料(FC300)探討其穩定性,以深冷急熱法(Uphill Quenching)比較自然時效所產生之安定化效果。對灰鑄鐵做安定化之可行性評估與不同次數之深冷急熱法對灰鑄鐵微結構之影響,再以硬度試驗評估深冷急熱法所產生之效益。
  實驗結果顯示,深冷急熱法對灰鑄鐵(FC300)之波來鐵基地有類似石墨化的現象產生,局部區域之波來鐵有分解成肥粒鐵與石墨的現象,在石墨形貌方面,經過深冷急熱法處理後石墨有成長之現象,硬度則無明顯之變化,其原因為波來鐵分解現象僅限於局部區域,尚無法對整個基地造成明顯之影響;但經過多次深冷急熱法處理後,試件有塑性變形產生使殘留應力釋放,對尺寸的穩定性應有一定的助益。
英文摘要  Precision machine tool industry has been toward the high precision and high stability, so the request of cast iron was more strict and hard to achieve. If the precision machine tool was made of unstable gray cast iron, the error of accuracy would be accumulated by using time increased. In this study, gray cast iron(FC300) by used material in precision machine tool was studied. Using uphill quenching to compare with the influence produced by natural aging is a method to research stability of gray cast iron. In this experiment, feasibility of uphill quenching prompt gray cast iron stable and the evolution of microstructure with different times of cycle were discussed. Finally, the benefit it produced would be evaluated via hardness test.
 The experimental results showed that the phenomenon of graphitization on the part of pearlite matrix would be observed slightly. Part of pearlite matrix dissolved by several times of plastic strain to ferrite and graphite. For the graphite morphology, dimension of graphite increased with cycles and the duration of uphill quenching. Result of hardness did not change significantly, because the phenomenon of graphitization only discover in part of matrix. Moreover, the sample was treated with uphill quenching, and the distortion was observed via residual stress released. Finally, uphill quenching might have some benefits for stabilization of gray cast iron.
論文目次 口試合格證明 I
摘要 II
Abstract III
誌謝 IV
總目錄 VI
表目錄 VIII
圖目錄 IX
一、前言 1
二、文獻回顧與相關理論 4
2.1深冷處理 11
2.2深冷急熱法 14
2.3灰鑄鐵與白鑄鐵 18
2.4合金元素對灰鑄鐵之影響 21
2.5灰鑄鐵凝固過程 25
2.6石墨形貌 27
2.7灰鑄鐵的過冷度 29
三、研究方法及步驟 32
3.1實驗規劃 32
3.2實驗方法 34
3.3實驗設備與分析儀器 37
四、研究結果與討論 40
4.1波來鐵組織觀察 40
4.2石墨形貌觀察 55
4.3深冷急熱法對機械性質之影響 56
五、結論 62
六、建議與未來方向 63
七、參考文獻 64
參考文獻 [1]林良清, 賴錦滄, 李世明, "工具機鑄造學," 經濟部國際貿易局, 1980.
[2]劉信宏, 黃蓉芬, 江靜愚, "2010年工具機產業技術發展預測與主要國家研發政策分析," 工業技術研究院產業經濟與趨勢研究中心, 2002.
[3]A. P. Gulyaev, "Cold Treatment of Steel," Metal Science and Heat Treatment, Vol. 40, 1998, pp. 449-455.
[4]R. Singh and K. Singh, "Enhancement of Tool Material Machining Characteristics with Cryogenic Treatment: A Review," International Conference on Industrial Engineering and Operations Management, 2010.
[5]E. A. Smol'nikov and G. A. Kossovich, "Cold Treatment of Cutting Tools," Metal Science and Heat Treatment, Vol. 22, 1980, pp. 704-705.
[6]D. R.Dreger, "The Promise of Cryogenic Processing," Machine Design, Vol. 53, 1981, pp. 73-78.
[7] S. Kalia, "Cryogenic Processing: A Study of Materials at Low Temperatures," Journal of Low Temperature Physics, Vol. 158, 2010, pp. 934-945.
[8]J. Y. Huang, Y. T. Zhu, X. Z. Liao, I. J. Beyerlein, M. A. Bourke, and T. E. Mitchell, "Microstructure of Cryogenic Treated M2 Tool Steel," Materials Science and Engineering: A, Vol. 339, 2003, pp. 241-244.
[9]G. Krauss and D.K. Matlock, "Effects of Strain Hardening and Fine Structure on Strength and Toughness of Tempered Martensite in Carbon Steels," Journal De Physique, Vol. 5, 1995, pp. 51-60.
[10]F. Meng, K. Tagashira, R. Azuma and H. Sohma, "Role of Eta-carbide Precipitation's in the Wear Resistance Improvements of Fe-12-Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment," ISIJ International, Vol. 34, 1994, pp. 205-210.
[11]金重勳, "熱處理," 復文書局, 2007.
[12]H. N. Hill, R. S. Barker and L. A. Willey, "The Thermo-mechanical Method for Relieving Residual Quenching Stresses in Aluminum Alloys," Transactions of the American Society for Metals, Vol. 52, 1960, pp. 657-674.
[13]S. Huang, Z. Zhao, Y.Xiao, F. Kang, H. Ning and C. Hu, "Influence of Thermal-cooling Cycle on Both Quenching-induced Residual Stress and Machining-induced Distortion of Aluminum Cone-shaped Part," Journal of Mechanical Engineering, Vol. 14, 2010, pp. 73-78.
[14]H. Shao, Z. J. Liu and J. Liu, "Influence of Ageing and Thermal-cooling Cycling Treatments on Microplastic Deformation Resistance of 2024 Aluminum Alloy," The Chinese Journal of Nonferrous Metals, Vol. 10, 2000, pp. 330-333.
[15]F. Yang, G. H. Wu and D. L. Sun, "Preliminary Analysis of Effect of Stablizing Treatment on Micro-yield Behaviors for LY12 Aluminium Alloy," Material for Mechanical Engineering, Vol. 27, 2003, pp. 6-9.
[16]H. H. Liu, J. Wang, H. S. Yang, B. L. Shen, S. J. Gao and S. J.Huang, "Effect of Cryogenic Treatment on Property of 14Cr2Mn2V High Chromium Cast Iron Subjected to Subcritical Treatment," Journal of Iron and Steel Research, International, Vol. 13, 2006, pp. 43-48.
[17]H. H. Liu, J. Wang, B. L. Shen, H. S. Yang, S. J. Gao and S. J. Huang, "Effects of Deep Cryogenic Treatment on Property of 3Cr13Mo1V1.5 High Chromium Cast Iron," Materials & Design, Vol. 28, 2007, pp. 1059-1064.
[18]K. H. W. Seah, J. Hemanth, and S. C. Sharma, "Wear Characteristics of Sub-zero Chilled Cast Iron," Wear, Vol. 192, 1996, pp. 134-140.
[19]J. J. Coronado and A. Sinatora, "Abrasive Wear Study of White Cast Iron with Different Solidification Rates," Wear, Vol. 267, 2009, pp. 2116-2121.
[20]D. Mohan Lal, S. Renganarayanan, and A. Kalanidhi, "Cryogenic Treatment to Augment Wear Resistance of Tool and Die Steels," Cryogenics, Vol. 41, 2001, pp. 149-155.
[21]A. V. Korznikov, Y. V. Ivanisenko, D. V. Laptionok, I. M. Safarov, V. P. Pilyugin, and R. Z. Valiev, "Influence of Severe Plastic Deformation on Structure and Phase Composition of Carbon Steel," Nanostructured Materials, Vol. 4, 1994, pp. 159-167.
[22]Y. Ivanisenko, W. Lojkowski, R. Z. Valiev, and H. J. Fecht, "The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion," Acta Materialia, Vol. 51, 2003, pp. 5555-5570.
[23]M. C. Ashton and R. H. Newall, "Kinetics of the Isothermal Precipitation of Graphite in White Cast Irons," AFS Transactions, Vol. 21, 1971, pp. 18-22.
[24]R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, "Selected Values of the Thermodynamic Properties of Binary Alloys," ASM Handbook, 1973.
[25]S. Hartmann and H. Ruppersberg, "Thermal Expansion of Cementite and Thermoelastic Stresses in White Cast Iron," Materials Science and Engineering: A, Vol. 190, 1995, pp. 231-239.
[26]J.R. Davis, "ASM Specialty Handbook:Cast Irons," ASM International ,1996.
[27]F. Cajnera, V. Leskovsek, D. Landeka and H. Cajnera "Effect of Deep-Cryogenic Treatment on High Speed Steel Properties," Materials and Manufacturing Processes, Vol. 24, 2009, pp. 743-746.
[28]A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K. H. Stiasny, "Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels," Journal of Materials Processing Technology, Vol. 118, 2001, pp. 350-355.
[29]P. I. Patil, "Comparison of Effects of Cryogenic Treatment on Different Types of Steels : A Review," International Journal of Computer Applications, 2012.
[30]張茂勛, 何福善, 尤華平, 郭帥, "深冷處理技術進展及應用," 福州大學機械工程學院, 2003.
[31]大和久重雄, "熱處理108招," 全華科技圖書股份有限公司, 1986.
[32]H. Chandler, "Heat Treater's Guide - Practices and Procedures for Irons and Steels," ASM International, 1995.
[33]T. Croucher, "Minimizing Machining Distortion in Aluminum Alloys through Successful Application of Uphill Quenching—A Process Overview," Journal of ASTM International, Vol. 6, 2009, pp. 332-351.
[34]Q.C. Wang, L.T. Wang and W. Peng, "Thermal Stress Relief in 7050 Aluminum Forgings by Uphill Quenching," Materials Science Forum, Vol. 490, 2005, pp. 97-101.
[35]D. A. Lados, D. Apelian, and L. Wang, "Minimization of Residual Stress in Heat-treated Al–Si–Mg Cast Alloys Using Uphill Quenching: Mechanisms and Effects on Static and Dynamic Properties," Materials Science and Engineering: A, Vol. 527, 2010, pp. 3159-3165.
[36]陳順發, "冶金因素對肥粒鐵球墨鑄鐵中溫脆性影響之探討, " 國立成功大學材料科學研究所, 博士論文, 1994.
[37]G. L. Rivera, R. E. Boeri, and J. A. Sikora, "Solidification of Gray Cast Iron," Scripta Materialia, Vol. 50, 2004, pp. 331-335.
[38]ASTM A247, "Test Method for Evaluating the Microstructure Graphite in Iron Castings," American Society for Testing of Materials, 1995.
[39]中國材料科學學會材料手冊編審委員會, "材料手冊-鋼鐵材料," 中國材料科學學會,1983.
[40]卓孟儒, "灰口鑄鐵離心鑄造製程與性質," 國立成功大學材料科學研究所, 碩士論文, 1998.
[41]D. M. Stefanescu, F. Martinez and I. G. Chen, "Solidification Behavior of Hypoeutectic and Eutectic Compacted Graphite Cast Iron. Chilling Tendency and Eutectic Cells," AFS Transactions, Vol. 91, 1983, pp. 205-216.
[42]J. F. Janowak and R. B. Gundlach, "A Modern Approach to Alloying Gray Iron," AFS Transactions, Vol. 90, 1982, pp. 847-863.
[43]L. E. Menawati, R. W. Heine and C. R. Loper Jr, "Relationship of Gray Iron Macro- and Microstructure to Cooling Curves," AFS Transactions, Vol. 78, 1970, pp. 363-373.
[44]I. Minkoff, "Solidification and Cast Structure," John Wiley & Sons, 1986.
[45]JIS G 5501, "Grey Iron Castings," Japanese Industrial Standards, 1995.
[46]G. V. Voort, "ASM Handbook-Metallography and Microstructure," ASM International, 1985.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw