進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707201118514800
論文名稱(中文) 電子錢包使用經驗影響手機行動付款採用意願之研究
論文名稱(英文) A Study on the Experience of Using E-wallet Affect the Intention Action of Mobile Payment
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 99
學期 2
出版年 100
研究生(中文) 蔡佳吟
研究生(英文) Chia-Yin Tsai
學號 R9696102
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-黃國平
口試委員-張瀞之
口試委員-劉佳玲
中文關鍵字 電子錢包  行動付款  科技接受模型  創新抵制  RFM模型 
英文關鍵字 E-wallet  Mobile Payment  Technology Acceptance Model (TAM)  Innovation Resistance  RFM model 
學科別分類
中文摘要 隨著行動通訊技術的進步以及網際網路的普及,行動付款被喻為下一個發展趨勢。在台灣,許多企業投入大量的人力與資金發展手機行動付款,技術發展也已相當純熟,且台灣行動電話普及率已遠超過100%,但將較於國外,手機行動付款被消費者接受的程度並不如預期因此,本研究以科技接受模型(Technology Acceptance Model, TAM)為基礎,結合Rogers之創新採用理論 (Innovation Adoption)正向因素與Ram 之創新抵制(Innovation Resistance)負向因素,期望能藉此完整探討手機行動付款之消費者接受模式。
本研究利用結構方程模式(Structural Equation Model,SEM)分析其採用路徑過程,另以RFM理論為投入變數作K-means兩階段集群分群,並以多群組方法分析不同電子錢包使用強度族群間在模式的採用過程是否具有差異;由於手機行動付款在台灣為一新興服務,且尚未普及,因此另作有/無手機行動付款使用經驗之多群組分析比較,最後提出本研究之管理意涵與建議。
本研究以傳統紙本問卷形式發放,台灣北中南共蒐集793份有效問卷,研究結果如下所述:
1. 在整體模型分析,「知覺有用」、「知覺易用」、「相容性」皆對「採用態度」產生顯著正向影響;「知覺易用」對「知覺有用」亦有顯著正向影響;「採用態度」對「行為意向」有顯著正向影響。「使用障礙」、「價值障礙」、「風險障礙」、「傳統障礙」、「形象障礙」、「知覺學習風險」皆對「採用態度」產生顯著負向影響。
2. 電子錢包低度使用族群和高度使用族群之間,在「風險障礙採用態度」的路徑具有顯著性之差異。
3. 有/無手機行動付款使用經驗族群間,在「知覺有用採用態度」、「相容性採用態度」兩條路徑上有顯著性的差異。
4. 在三個不同行為意向族群間,其接受模式大部分有顯著差異性存在。
英文摘要 With the continuous progress of information technology and maturity in wireless technology, mobile payment is considered to be the next trend after electronic commerce. Although technologically advanced solutions exist and mobile phone penetration rate was over 100% in Taiwan, there is still a lack of acceptance of mobile payment services among consumers.This paper examines factors that influence the intention to use a mobile payment solution. Thus, this research primarily based on the theory of Technology Acceptance Model (TAM) and the negative factor (Innovation Resistance). Hope to find the barriers which consumers faced.
The problem is analyzed using SEM to model the development process of mobile payment. Also, using RFM model to measure the E-wallet usage intensity and K-means algorithm for clustering analysis. Then using multi-group method to include the E-wallet usage intensity factor to conclude the different relationship quality pattern of groups. Considering the mobile payment service as a new service, we also aimed to know the differences between experienced and potential visitors. Finally, our study will assist managers in implementing appropriate business models and service strategies for different mobile payment user groups.
This research developed a traditional questionnaire to gather sample data. Total valid response count is 793. The results of this thesis are summarized as below:
1. The empirical results show particularly strong support for the effects of perceived usefulness, perceived ease of use and compatibility that all have significant and obvious influence on adoption attitude. Perceived ease of use have significant and obvious influence on perceived usefulness. Adoption attitude have significant and obvious influence on behavior intention.All of the usage barrier, value barrier, risk barrier, traditional barrier, image barrier and perceived learning risk significantly affect customers to resist the adoption of mobile payment.
2. There is significant difference between the E-wallet usage intensity groups on the path of “risk barrier- adoption attitude”.
3. There is significant difference between the experienced and potential visitors on the path of “perceived usefulness - adoption attitude” and “compatibility - adoption attitude”.
4. There is a significant difference between market segment of behavioral intention groups
論文目次 第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究流程 4
第二章 文獻探討 5
2.1 電子錢包市場 5
2.1.1 電子錢包發展 5
2.1.2 國內電子錢包發展趨勢 6
2.2 手機行動付款市場 9
2.2.1 行動付款定義與類型 9
2.2.2 國內手機行動付款發展現況 13
2.2.3 國外手機行動付款發展現況 16
2.3 創新採用理論 18
2.3.1 創新的概念 18
2.3.2 創新產品採用過程 19
2.4 科技接受理論 21
2.5 創新抵制理論 24
2.5.1 創新抵制定義 24
2.5.2 創新抵制來源 24
2.6 RFM模式之定義與應用 26
2.6.1 RFM模式之定義 26
2.6.2 RFM模式之運用 27
2.7 小結 28
第三章 研究方法 29
3.1 研究架構 29
3.2 研究假說 30
3.3 研究設計 36
3.3.1 研究構面操作性定義與衡量方法 36
3.3.2 問卷尺度衡量 42
3.4 資料蒐集 42
3.5 資料分析方法 43
3.5.1 人口統計變數 43
3.5.2 信度分析 44
3.5.3 效度分析 45
3.5.4 結構方程模式 45
3.5.6 集群分析 47
第四章 實證結果 49
4.1 問卷前測分析 49
4.2 正式樣本分析 54
4.2.1 樣本基本資料統計分析 54
4.2.2 樣本相關使用經驗之分析 56
4.3 正式問卷信度與效度檢定 58
4.3.1 正式問卷信度分析 58
4.3.2 正式問卷效度分析 58
4.4 整體模式分析 63
4.4.1 SEM模式建立 63
4.4.2 SEM模式結果分析 66
4.4.3 整體模式分析小結 68
4.5 RFM多群組分析比較 69
4.5.1 集群分析 69
4.5.2 集群分析樣本特性分佈 71
4.5.3 多群組之假說驗證比較 75
4.5.4 RFM多群組比較分析小結 80
第五章 模型詮釋與討論 81
5.1 「有/無手機行動付款使用經驗」族群之模式分析 81
5.2 不同程度行為意向之多群組分析模式比較 86
5.2.1 不同程度行為意向之集群分析 86
5.2.2 行為意向多群組之假說驗證比較 87
第六章 結論與建議 93
6.1 整體模式研究發現 93
6.2 多群組模式研究發現 94
6.3 管理意涵 95
6.4 研究限制 97
6.5 後續研究建議 97
參考文獻 99
附錄 107



參考文獻 一、中文文獻
1. 丁筱珊(2008),「消費者使用多功能智慧卡動機之區隔研究」,國立成功大學電信管理研究所碩士論文。
2. 李炳昌(1999),「應用在網際網路上的小額付款協定」, 國立交通大學資訊管理所碩士論文。
3. 李靜怡(2004),「手機使用者對手機上網之創新抵制來源因素探討」,台灣科技大學企業管理學系碩士論文。
4. 林祥生、劉益豪(2008),「應用資料採礦探討國際線航空旅客之線上購票行為」,運輸計劃季刊,第三十七卷第二期,頁 197-236。
5. 吳統雄(1990),電話調查理論與方法,聯經出版社。
6. 洪朝陽(2005),消費者使用WAP頻率對消費者知覺行動商務購物風險及購買意願影響研究,運動休閒管理學報,第二卷第一期,頁133-144。
7. 邵曉薇、郭雨涵(2000),電子商務導論,台北旗標出版。
8. 張彥淳(2006),「影響消費者採用行動付款因素之研究」,國立中央大學資訊管理學系碩士論文。
9. 詹秀惠(2005),「影響消費者採用電子錢包因素之研究」,國立台北大學企業管理學系碩士論文。
10. 廖凡雅(2006),「手機使用者對於3G影音服務之創新抵制因素來源分析」,國立台灣科技大學企業管理系碩士班碩士論文。
11. 廖御超(2006),「影響採用創新產品之相關因素探討—以3G手機為例」,國立東華大學企業管理學系碩士班。
12. 陳順宇(2004),多變量分析,華泰書局。
13. 陳彥學、楊慶隆(2009) ,「產業交易安全環境評估與推動研究期末報告」。
14. 馮炫竣(2000),「消費者使用電子銀行之行為研究-以ATM、電話銀行及網路銀行為例」,私立元智大學管理研究所碩士論文。
15. 謝文雄(2002),「以資料探勘探討顧客消費之行為」,雲林科技大學資訊管理研究所碩士論文。
16. 謝政益(2003),「網路電話接受度之研究」,國立台灣科技大學資訊管理系所碩士論文。
17. 蔡永恆(1999),「應用資料挖掘技術研究銀行顧客消費行為」,靜宜大學資訊管理研究所碩士論文。
18. 蘇柏全、林熙禎、李宙奇(2006),「RFM 模型結合貝氏隨機模式與時間序列模式運用於顧客狀態預測」,電子商務學報,第八卷第二期,頁193-218。

二、英文文獻
1. Ajzen, I. and Fishbein, M. (1980), “ Understanding Attitudes and Predicting Social Behavior, ” Prentice-Hall, Englewood Cliffs, NJ.
2. Agarwal, R. and J. Prasad (1998), “Are Individual Differences Germane to the Acceptance of New Information Technologies?” Decision Science, 30(2), pp. 361-391.
3. Anderberg, M. R., (1973), Cluster Analysis for Applications. NewYork : Academic Press, pp.134-141.
4. Black, N.J., Lockett, A., Winklhofer, H. and Ennew, C. (2001), “The adoption of internet financial services: a qualitative study.”, International Journal of Retail & Distribution Management, 20(8), pp. 390-8.
5. Blythe, Jim (1999), “Innovativenes and Newness in High-Tech Consumer Durables.” Journal of Product & Brand Managemt , Vol 8 , pp.415-429.
6. Chen, L.D., (2008), “A model of consumer acceptance of mobile payment”, International Journal of Mobile Communications, 6 (1), pp. 32–52.
7. Chou, Y., Lee, C., & Chung, J. (2004). “Understanding m-commerce payment systems through the analytic hierarchy process.” Journal of Business Research, 57(12), pp. 1423- 1430.
8. Clarke, I. (2001), “Emerging value propositions for M-commerce”, Journal of Business Strategies, 18(2), pp.133–149.
9. Davis, F.D., Bagozzi, R. P. & Warshaw, P.R., (1989), “User Acceptance of Computer Technology: A Comparison of two theoretical models, ” Management Science, Vol. 35, pp.982-1003.
10. Dahlberg, Tomi , Niina Mallat , Jan Ondrus and Agnieszka Zmijewska(2007), “Past, Present and Future of Mobile Payments Research: A Literature Review”, Electronic Commerce Research and Applications, pp. 1-17.
11. Featherman, M. S. and Pavlou, P. A. (2003), “Predicting e-services adoption: a perceived risk perspective,” International Journal of Human-computer Study, 59( 4), pp.451-474.
12. Fornell, C., and Larcker, D.F. “Evaluating Structural Equation Models with Unobservable and Measurement Error: A Comment,” Journal of Marketing Research, 18(3), pp. 39-50.
13. Gebauer, J., & Tang, Y. (2008). “ Applying the Theory of Task-Technology Fit to Mobile Technology: The Role of User Mobility. ” International Journal of Mobile Communications, 6(3), pp. 321-344.
14. Goodhue, D. L. (1998). “Development and measurement validity of a task-technology fit instrument for user evaluations of.”, Decision Sciences, 29(1), pp.105-138.
15. Hair, Jr. R., Anderson, R.E., Tatham, R.L., and Black, W.C. (1998), Multivariate Data Analysis, 5th Edition. Macmillan, New York.
16. Heijden, Hans (2002), “Factors Affecting the Successful Introduction of Mobile Payment Systems,” 15th Bled Electronic Commerce Conference.
17. Herbig, P. A., & Day, R. L. (1992). “Customer acceptance: The key to successful introductions of innovations. ” Marketing Intelligence & Planning, 10(1), pp. 4–15.
18. Hirschman, E. C. (1987). “Adoption of an incredibly complex innovation: Propositions from a humanistic viewpoint. ” Advances in Consumer Research, 14, pp. 376–377.
19. Hoeffler, S., & Keller, K. L. (2003), “The Marketing Advantages of Strong Brands, ” Journal of Brand Management, 10(6), pp. 421-445.
20. Hsieh, N. C. (2004), “An Integrated Data Mining and Behavioral Scoring Model for Analyzing Bank Customers”, Expert Systems with Applications, Vol. 27, pp. 623-633.
21. Kahan, H. (1998), “Using Database Marketing Techniques To Enhance
One-to-One Marketing Initiatives, ” Journal of Consumer Marketing, 15(5), pp.491-493.
22. Yang, K.C.C., (2005), “Exploring factors affecting the adoption of mobile commerce Singapore”, Telematics and Informatics, 22( 3) , p257-277.
23. Kuisma T, Laukkanen T, Hiltunen M. (2007), “Mapping the reasons for resistance to internet banking: a means-end approach.”, Inform Manage, 27(2) , pp.75–85.
24. Laukkanen, T. and Lauronen, J. (2005), “Consumer value creation in mobile banking services”, International Journal of Mobile Communications, 3 (4), pp. 325-338.
25. Lee, M. K. O., Cheung, C. M. K., Chen, Z., (2005). “ Acceptance of Internet-based Learning Medium: The Role of Extrinsic and Intrinsic Motivation. ” Information & Management, 42(8), pp. 1095-1104.
26. Liao, S., Shao, Y. P., Wang, H. and Chen, A. (1999), “The adoption of virtual banking: An empirical study,” International Journal of Information Management, 19(1), pp. 63-74.
27. Liao, Z. and Cheung, M.T. (2002), “Internet-based e-banking and consumer attitudes: an empirical study”, Information and Management, 39, pp. 283-95.
28. Lin H., Choong Y., Salvendy G.,(1997), “A proposed index of usability: a method for comparing the relative usability of different software systems”, Behaviour and Information Technology, 16(4–5), pp.267–278.
29. Mathieson, K. (1991), “ Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior, ” Information Systems Research, 2(3), pp. 173-191.
30. Miyazaki, Anthony D. and Ana Fernandez. (2001), “Consumer Perceptions of Privacy and Security Risks for Online Shopping. ” The Journal of Consumer Affairs, 35( 1), pp. 27.
31. Molesworth, M., & Suortti, J.-P. (2002). “ Buying cars online: The adoption of the web for high-involvement, high cost purchases. ” Journal of Consumer Behaviour, 2(2), 155–168.
32. Moore, G.C. and Benbasat, I.,(1991), “Development of an Instrument to Measure the Perception of Adopting an Information Technology Innovation,”
Information Systems Research, 2(3), pp.192-222.
33. M.F. Devaraj and R. Kohli(2002), “Antecedents of B2C channel satisfaction and preference: Validation e-Commerce metrics, ” Information Systems
Research, 13, pp. 316-334.
34. Niina Mallat, Matti Rossi, Virpi Kristiina Tuunainen, Anssi Öörni (2009), “The impact of use context on mobile services acceptance: The case of mobile ticketing,” Information & Management ,46(3), pp.190-195.
35. Nysveen, H., Pedersen, P. E., Thorbjørnsen, H., (2005), “ Intentions to Use Mobile Services: Antecedents and Cross-Service Comparisons. ”Journal of The Academy of Marketing Science, 33(3), pp .330-346.
36. Oreg, S., (2003). “Resistance to Change: Developing an Individual Differences Measure. “Journal of Applied Psychology, 88(4), pp. 680-693.
37. Pavlou, P.A. (2003), “Consumer acceptance of electronic commerce:integrating trust and risk with the technology acceptance model”, International Journal of Electronic Commerce, 7(3), pp. 101-34.
38. Philips Kolter (1996), “Marketing Management-An Asian Perspective,” Prentice Hall, pp.83-90.
39. Plouffe, C. R., Hulland, J. S., and Vandenbosch, M. (2001), “Richness versus parsimony in modeling technology adoption decisions – understanding merchant adoption of a smart card-based payment system.” Information Systems Research, 12(2) , pp. 208–222.
40. Porter, C. E., Donthu, N., (2006), “Using the Technology Acceptance Model to Explain How Attitudes Determine Internet Usage: The Role of Perceived Access Barriers and Demographics. ” Journal of Business Research, 59(9), pp. 999-1007.
41. Punj, G. and Stewart, D. W.(1983), “Cluster Analysis in Marketing Research: Review and Suggestions for Application,” Journal of Marketing Research, 20, pp.134-148.
42. Ram, S. and Sheth, J.N. (1987), “Bringing Innovation To Market: How To Break Corporate and Customer Barriers, ” NY: Wiley &Sons,.
43. Ram, S. and Sheth, J.N. (1989), “Consumer Resistence to Innovations: the
Marketing Problem and its Solutions, ” The Journal of Consumer Marketing,
6(2) , pp. 5-14.
44. Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). “Understanding consumer acceptance of mobile payment services: An empirical analysis. ” Electronic Commerce Research and Applications, 9, pp. 209-216.
45. Spence, M. T. and Brucks, M. (1997), “The Moderating Effects of Problem
Characteristics on Experts’ and Novices' Judgments,” Journal of Marketing
Research, 34 , pp. 233-247.
46. Sung, H.H. & Sang, C.P. (1998). “Application of Data Mining Tools to Hotel
Data Mart on the Intranet for Database Marketing,” Expert Systems with
Application, 15, pp. 1-31.
47. Szmigin, I., & Foxall, G. (1998). “Three forms of innovation resistance: The case of retail payment methods. ” Technovation, 18(6/7), pp. 459–468.
48. Tornatzky, L. G., and Klein, K. J., (1982), “Innovation Characteristics and Innovation Adoption-Implementation: A Meta-Analysis of Findings,” IEEE Transactions on Engineering Management, EM-29,No.1, pp.28-45.
49. Veryzer, R. W., Jr (1998), “Discontinuous innovation and the new product development process,” Journal Product Innovation Management, 15, pp. 304-321.
50. Venkatesh, V. (2000) , “Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model,” Information System Research,11(4), pp.342-365.
51. Wind, Jerry and Vijay Mahajan (1997), “Issues and Opportunities in New Product Development: An Introduction to the Special Issue,” Journal of Marketing Research, 34, pp.1-12.

三、網頁
[1] 八達通,http://www.octopuscards.com/
[2] 中華電信股份有限公司,http://www.cht.com.tw/
[3] 高雄捷運公司,http://www.krtco.com.tw/
[4] 悠遊卡公司,http://www.easycard.com.tw/
[5] 資策會,http://www.iii.org.tw/ 
[6] 遠雄建設,http://www.farglory.com.tw/。
[7] 7-11,http://www.7-11.com.tw/ 
[8] emome,http://www.emome.net/ 
[9] NTTdocomo,http://www.nttdocomo.com/
[10] Paybox,http://www.paybox.com/ 

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw