進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2707201114092100
論文名稱(中文) 中風病人在視覺回饋踩車訓練之肌電圖與生物力學分析
論文名稱(英文) Electromyographic and Biomechanical Analysis of Visual Feedback on the Cycling Training of Stroke Patients
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 羅兆真
研究生(英文) Chao-Chen Lo
學號 P86984170
學位類別 碩士
語文別 英文
論文頁數 33頁
口試委員 指導教授-陳家進
口試委員-陳天送
口試委員-蘇芳慶
口試委員-林桑伊
口試委員-Robert Rieger
中文關鍵字 踩車  視覺回饋  中風 
英文關鍵字 cycling  visual feedback  stroke 
學科別分類
中文摘要 中風之後常見步態損傷因此這是中風復健的主要目標之一,然而由於肌肉無力、平衡不良、軀幹直立控制問題,步態訓練對於許多中風病人並不那麼適合。而踩車具備與走路相類似的特性,兩側下肢交替曲屈與伸直,拮抗肌與協同肌的交互活化。然而,與正常人不同的是中風病人通常會有不對稱的踩車模式,這可以藉由力矩的感測與肌電訊號的量測分析得知。內在與外在的回饋可以提供受試者資訊以加強動作控制與學習。而維持固定的踩車速動對踩車的控制是很重要的因素而且也可以反映出兩腳的協調能力。因此本研究目的為探討視覺回饋對中風病人踩車在肌動學、運動學與動力學方面的控制影響。四十個受試者從區域醫院或地方復健中心與診所徵招。臨床評估包括迷你心智量表、巴氏量表與傅格─梅爾評估量表來評估受試者的心智狀態、日常生活功能與下肢動作功能。四對電極分別貼在兩側的股直肌與股二頭肌。形狀對稱指數在這裡是用來描述兩側肌電圖線性封包的形狀相似度,另外面積對稱指數是指兩邊肌電圖線性封包面積重疊比例。踩車的速度是由腳踏車即時量測得知,平均踩車功率為速度乘以力矩,代表力的輸出,不平順指數是用來決定踩車的平滑度。在這個研究中,許多指數顯示給予視覺回饋有正向的進步。在肌動學方面,股直肌的面積對稱指數增加指出壞邊的股直肌活化程度增加以能配的上好邊的活化程度。運動學與動力學方面不平化指數的下降與平均踩車功率的上升顯示對於速度的控制改善與較大的力量輸出。本實驗發現視覺回饋可以改善對於動作的神經肌肉控制,而這是來自於較好的股四頭肌控制。因此根據本實驗可建議臨床在腳踏車訓練方面給予額外的視覺回饋以促進對稱的肌肉活化踩車表現。
英文摘要 Gait impairments are common after stroke. However, ambulatory training may not be suitable due to the severity of stroke. Leg cycling is an alternative method for pre-ambulatory training for its characteristics of central pattern generation. Nevertheless, stroke patients usually exhibit asymmetrical movement during cycling that can be evaluated from electromyography (EMG). Visual feedback for movement can enhance motor control and learning. Maintaining a regular speed is an important aspect in cycling control and could reflect the level of coordination of the two legs. Thus the aim of this study was to investigate the effects of visual feedback on the control of cycling motion in stroke patients from biomechanical aspects. Forty stroke patients were recruited with clinical assessments of mental, function of daily living, and Fugl-Meyer lower-extremity motor assessment before cycling test. Four pairs of surface electrodes were placed bilaterally on the muscle bellies of the rectus femoris and biceps femoris. Shape symmetry index (SSI) and area symmetry index (ASI) are used to quantify the kinesiological aspect. Cycling speed, averaged cycling power and roughness index (RI) are used to describe the performance of kinematic and kinetic aspect. Kinesiologically, there was increased ASI in the rectus femoris, indicating that the extent to which the amplitude of bilateral rectus femoris became a better match. As for kinematic and kinetic aspects, there was decreased RI and increased averaged cycling power, indicating improved speed control within a cycle and greater force output, respectively. Thus, the addition of cycling speed visual feedback could help to improve neuromuscular control and cycling performance. Such improvement is likely to be the result of better control of the rectus femoris muscle activation.
論文目次 摘要 i
Abstract ii
致謝 iii
Lists of Tables vi
List of Figures vii
Charpter1 Introduction 1
1.1 Background 1
1.2 Cycling performance in stroke patients 2
1.3 Visual feedback for treatment 4
1.4 Motivations and proposes 7
Charpter2 Materials and Methods 9
2.1 Subjects 9
2.2 Basic data evaluation of stroke patients 9
2.3 Cycling test 10
2.4 Data analysis 12
2.4.1 Shape symmetry index 13
2.4.2 Area symmetry index 14
2.4.3 Roughness index 15
2.4.4 Cycling speed 16
2.4.5 Averaged cycling power 16
2.5 Statistical analysis 17
Charpter3 Results 18
3.1 Subjects recruitment 18
3.2 Kinesiological analysis 19
3.2.1 Assessment using Area symmetry index 19
3.2.2 Assessment using shape symmetry index 20
3.3 Kinematical and kinetic analyses 20
3.3.1 Speed 21
3.3.2 Roughness index 21
3.3.3 Cycling power 22
3.4 Statistical analysis 23
Charpter4 Discussion and Conclusion 25
4.1 Symmetry index 25
4.1.1 Area Symmetry index 26
4.1.2 Shape symmetry index 27
4.2 Roughness index and averaged cycling power 27
4.3 Study limitation 28
4.4 Conclusion 28
References 29
參考文獻 Alarcon, F., Zijlmans, J. C., Duenas, G., & Cevallos, N. (2004). Post-stroke movement disorders: report of 56 patients. J Neurol Neurosurg Psychiatry, 75(11), 1568-1574.
Altschuler, E. L., Wisdom, S. B., Stone, L., Foster, C., Galasko, D., Llewellyn, D. M., et al. (1999). Rehabilitation of hemiparesis after stroke with a mirror. Lancet, 353(9169), 2035-2036.
Barclay-Goddard, R., Stevenson, T., Poluha, W., Moffatt, M. E., & Taback, S. P. (2004). Force platform feedback for standing balance training after stroke. Cochrane Database Syst Rev(4), CD004129.
Bonan, I. V., Colle, F. M., Guichard, J. P., Vicaut, E., Eisenfisz, M., Tran Ba Huy, P., et al. (2004). Reliance on visual information after stroke. Part I: Balance on dynamic posturography. Arch Phys Med Rehabil, 85(2), 268-273.
Brindle, T. J., Nitz, A. J., Uhl, T. L., Kifer, E., & Shapiro, R. (2006). Kinematic and EMG characteristics of simple shoulder movements with proprioception and visual feedback. J Electromyogr Kinesiol, 16(3), 236-249.
Brown, D. A., & Kautz, S. A. (1998). Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia. Stroke, 29(3), 598-606.
Brown, D. A., & Kautz, S. A. (1999). Speed-dependent reductions of force output in people with poststroke hemiparesis. Phys Ther, 79(10), 919-930.
Buttelli, O., Vandewalle, H., & Peres, G. (1996). The relationship between maximal power and maximal torque-velocity using an electronic ergometer. Eur J Appl Physiol Occup Physiol, 73(5), 479-483.
Chen, G., Patten, C., Kothari, D. H., & Zajac, F. E. (2005). Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture, 22(1), 51-56.
Chen, H. Y., Chen, S. C., Chen, J. J., Fu, L. L., & Wang, Y. L. (2005). Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns. J Electromyogr Kinesiol, 15(6), 587-595.
Cirstea, C. M., Ptito, A., & Levin, M. F. (2006). Feedback and cognition in arm motor skill reacquisition after stroke. Stroke, 37(5), 1237-1242.
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. J Electromyogr Kinesiol, 18(5), 857-865.
Druzbicki, M., Kwolek, A., Depa, A., & Przysada, G. (2010). The use of a treadmill with biofeedback function in assessment of relearning walking skills in post-stroke hemiplegic patients - a preliminary report. Neurol Neurochir Pol, 44(6), 567-573.
Fujiwara, T., Liu, M., & Chino, N. (2003). Effect of pedaling exercise on the hemiplegic lower limb. Am J Phys Med Rehabil, 82(5), 357-363.
Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 19(2), 182-198.
Johnston, M., Pollard, B., Morrison, V., & MacWalter, R. (2004). Functional limitations and survival following stroke: psychological and clinical predictors of 3-year outcome. Int J Behav Med, 11(4), 187-196.
Kautz, S. A., & Brown, D. A. (1998). Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia. Brain, 121 ( Pt 3), 515-526.
Kojovic, J., Miljkovic, N., Jankovic, M. M., & Popovic, D. B. (2011). Recovery of motor function after stroke: a polymyography-based analysis. J Neurosci Methods, 194(2), 321-328.
Li, L., & Caldwell, G. E. (1998). Muscle coordination in cycling: effect of surface incline and posture. J Appl Physiol, 85(3), 927-934.
Li, L., & Caldwell, G. E. (1999). Coefficient of cross correlation and the time domain correspondence. J Electromyogr Kinesiol, 9(6), 385-389.
Lin, P. Y., Lin, S. I., Penney, T., & Chen, J. J. (2009). Applications of Near Infrared Spectroscopy and Imaging for Motor Rehabilitation in Stroke Patients. Journal of Medical and Biological Engineering, 29(5), 210-221.
Mazzocchio, R., Meunier, S., Ferrante, S., Molteni, F., & Cohen, L. G. (2008). Cycling, a tool for locomotor recovery after motor lesions? NeuroRehabilitation, 23(1), 67-80.
McNevin, N. H., Shea, C. H., & Wulf, G. (2003). Increasing the distance of an external focus of attention enhances learning. Psychol Res, 67(1), 22-29.
Neptune, R. R., Kautz, S. A., & Hull, M. L. (1997). The effect of pedaling rate on coordination in cycling. J Biomech, 30(10), 1051-1058.
Ng, Y. S., Stein, J., Salles, S. S., & Black-Schaffer, R. M. (2005). Clinical characteristics and rehabilitation outcomes of patients with posterior cerebral artery stroke. Arch Phys Med Rehabil, 86(11), 2138-2143.
Peng, C. W., Chen, S. C., Lai, C. H., Chen, C. J., Chen, C. C., Mizrahi, J., et al. (2011). Review: Clinical Benefits of Functional Electrical Stimulation Cycling Exercise for Subjects with Central Neurological Impairments. Journal of Medical and Biological Engineering.
Rosecrance, J. C., & Giuliani, C. A. (1991). Kinematic analysis of lower-limb movement during ergometer pedaling in hemiplegic and nonhemiplegic subjects. Phys Ther, 71(4), 334-343.
Rouffet, D. M., & Hautier, C. A. (2008). EMG normalization to study muscle activation in cycling. J Electromyogr Kinesiol, 18(5), 866-878.
Sackley, C. M., & Lincoln, N. B. (1997). Single blind randomized controlled trial of visual feedback after stroke: effects on stance symmetry and function. Disabil Rehabil, 19(12), 536-546.
Titianova, E. B., Pitkanen, K., Paakkonen, A., Sivenius, J., & Tarkka, I. M. (2003). Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke. Am J Phys Med Rehabil, 82(10), 778-786; quiz 787-779, 823.
Van Peppen, R. P., Kortsmit, M., Lindeman, E., & Kwakkel, G. (2006). Effects of visual feedback therapy on postural control in bilateral standing after stroke: a systematic review. J Rehabil Med, 38(1), 3-9.
van Vliet, P. M., & Wulf, G. (2006). Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil Rehabil, 28(13-14), 831-840.
Wagenaar, R. C., & Beek, W. J. (1992). Hemiplegic gait: a kinematic analysis using walking speed as a basis. J Biomech, 25(9), 1007-1015.
Wulf, G., McNevin, N., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A, 54(4), 1143-1154.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw