進階搜尋


下載電子全文  
系統識別號 U0026-2707201023391000
論文名稱(中文) 超音波壓電圓盤換能器的振動分析與實驗驗證
論文名稱(英文) The Study on Piezo-Disk Ultrasonic Transducer : Theoretical Analyses and Experiment Verification
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 宋家仲
研究生(英文) Chia-Chung Sung
學號 n1697474
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-田思齊
口試委員-張仁宗
口試委員-陳國聲
中文關鍵字 超音波  壓電圓盤換能器  振動 
英文關鍵字 Piezo-Disk  Ultrasonic Transducer  Theoretical 
學科別分類
中文摘要 壓電材料的振動行為是屬於機電耦合的現象。本文旨在透過數學模型來預測壓電圓版片經由電壓的連續弦波訊號激發出的動態特性。所以在共振頻率附近,計算壓電圓版片在厚度方向的自由端振幅。除此之外,伴隨壓電圓版片的振動,在其厚度方向的聲輻射(壓力波)也以海更斯原理(模型)解釋傳遞的情形。配合雷射位移計進行壓電圓版片在厚度方向的自由端振幅的量測實驗,並以聲音壓力計量測聲波在連續反射後的壓力大小。實驗證明本文使用的振動模型可以預測壓電圓版片的共振頻率,且海更斯原理可延伸作為連續反射波之傳遞行為的描述。
英文摘要 The main purpose of this research is to present a way of mathematical model to predict the vibrating behavior of thickness-electroded piezoelectric disks as ultrasonic transducers. Theoretical model was derived for steady state vibration of piezoelectric disks. When thickness and diameter are comparable in dimension, coupled vibration of thickness and radial motion is considered. Spectrum of displacement at the surface in the thickness direction was simulated with specific boundary conditions to analyze the resonance frequency. And the sound field radiation( pressure wave) in near field produced by the vibration of the piezoelectric disk was evaluated by Huygens-Fresnel principle. Disk vibration and the resulted sound pressure were measured by a set of home-made laser position sensor and a pressure sensor, respectively. It was found that the intensity of sound wave was enhanced because of its continuous reflection between the disk and pressure sensor. Based on experiment results, the validity of coupled vibration model and Huygens-Fresnel principle was verified.
論文目次 Chapter 1: Introduction . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outlines . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 2: Basics of Piezoelectric Materials . . . . . . . 8
2.1 A Charged Piezoelectric Material . . . . . . . . . . 8
2.2 Internal Energy of Piezoelectric Materials . . . . . 9
2.3 Constitutive Equations of Piezoelectric Materials . 12
Chapter 3: Theoretical Analyses . . . . . . . . . . . . . 15
3.1 Vibrations of Piezoelectric Disk . . . . . . . . . .16
3.2 Sound Field Radiation from the Piezoelectric Disk . 38
3.3 Summary of Theoretical Analysis . . . . . . . . . . 47
Chapter 4: Experiment . . . . . . . . . . . . . . . . . . 48
4.1 The Resonance Frequency of the Piezoelectric Disk . 48
4.2 Pressure from the Piezoelectric Disk Vibrator at The Position of The Obstacle . . . . . . . . . . . . . . . . .54
Chapter 5: Conclusions and Future Work . . . . . . . . . .62
Bibliography . . . . . . . . . . . . . . . . . . . . . . .64
Appendix A: Constitutive Equations of Piezoelectric
Materials . . . . . . . . . . . . . .. . . . . . .. . . . 67
A.1 General Description . . . . . . . . . . . . . . . . 67
A.2 Isothermal (S,E) Type Constitutive Equation . . . . 68
A.3 Alternative Forms of Constitutive Equations . . . . 71
Appendix B: Harmonic Analysis of Piezoelectric Disk on Ansys . . . . . . . 75
B.1 With Epoxy at The Fixed End . . . . . . . . . . . . 75
B.2 No Epoxy at The Fixed End . . . . . . . . . . . . . 76
Appendix C: Calibration of Laser Position Sensor . . . . . . . . . . . . . 77
Appendix D: Specifications . .. . . . . . . . . . . . . . 79
D.1 Laser . . . . . . . . . . . . . . . . . . . . . . . 79
D.2 Piezoelectric Disk . .. . . . . . . . . . . . . . . 81
D.3 Specific Acoustic impedance of Air and Epoxy . . . 83
D.4 Photodiode . . . . . .. . . . . . . . . . . . . . . 84
D.5 Analog Circuit after Photodiode . . . . . . . . . . 85
D.6 Pressure Sensor . . . . . . . . . . . . . . . . . . 88
參考文獻 [1] B. T.Wang, “Optimal placement of microphones and piezoelectric transducer actuators for far-field sound radiation control,” Journal of Acoustical Society of America, vol. 5, pp. 2975–2984, May 1996.
[2] D. Ding, Y. Zhang, and J. Liu, “Some extensions of the gaussian beam expansion: Radiation fields of the rectangular and the elliptical transducer,” Journal of Acoustical Society of America, vol. 6, pp. 3043–3048, June 2003.
[3] Y. S. kung, “Precision control of a piezoceramic actuator using neural networks,” IEEE, pp. 1866–1871, 2002.
[4] H. Nowotny and E. Benes, “General one-dimensional treatment of the layered piezoelectric resonator with two electrodes,” Journal of Acoustical Society of America, vol. 2, pp. 513–521, August 1987.
[5] H. F. Tiersten, “Thickness vibrations of piezoelectric plates,” Journal of Acoustical Society of America, vol. 35, pp. 53–58, January 1963.
[6] H. A. Kunkel, S. Locke, and B. Pikeroen, “Finite-element analysis of vibrational modes in piezoelectric ceramic disks,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 37, pp. 316–328, July 1990.
[7] L. Meirovitch, Fundamentals of Vibrations. Boston: McGraw-Hill, international ed., 2001. Chapter 8.
[8] J. Kocbach, Finite Element Modeling of Ultrasonic Piezoelectric Transducers. PhD thesis, University of Bergen, 2000.
[9] IEEE Standards Board, American National Standards Institute, IEEE Standard on Piezoelectricity, 1987.
[10] P. C. Y. Lee, N. Liu, and A. Ballato, “Thickness vibrations of a piezoelectric plate with dissipation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 52–62, January 2004.
[11] S. Y. Lin, “Coupled vibration analysis of piezoelectric ceramic disk resonators,” Journal of Sound and Vibration, vol. 218, no. 2, pp. 205–217, 1998.
[12] C. H. Huang, Y. C. Lin, and C. C. Ma, “Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 12–24, January 2004.
[13] A. Iula, N. Lamberti, and M. Pappalardo, “An approximated 3-d model of cylinder-shaped piezoceramic elements for transducer design,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, pp. 1056– 1064, July 1998.
[14] P. C. Y. Lee and N. Liu, “Plane harmonic waves in an infinite piezoelectric plate with dissipation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, pp. 1629–1638, December 2004.
[15] C. P. Griffice and J. A. Seydel, “Spherical wave decomposition approach to ultrasonic field calculations,” Journal of Nondestructive Evaluation, vol. 2, no. 3-4, pp. 241–247, 1981.
[16] J. D. N. Cheeke, Fundamentals and Applications of Ultrasonic Waves. Boca Raton: CRC Press, 2002. Chapter 6.
[17] J. F. Tressler, S. Alkoy, and R. E. Newnham, “Piezoelectric sensors and sensor materials,” Journal of Electroceramics, vol. 2-4, pp. 257–272, 1998.
[18] J. A. G. Ju´arez, “Piezoelectric ceramics and ultrasonic transducers,” Journal of Physics E: Scientific Instruments, vol. 22, pp. 804–816, 1989.
[19] D. K. Cheng, Fundamentals of engineering electromagnetics. Reading, Mass.: Addison-Wesley Pub. Co., 1993.
[20] H. F. Tiersten, Linear Piezoelectric Plate Vibrations. New York: Plenum Press, 1969.
[21] T. M. Atanackovic and A. Guran, Theory of elasticity for scientists and engineers. Boston: Birkh¨auser, 2000. p1-p46.
[22] L. E. Malvern, Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, N.J.: Prentice Hall, 1969. Chapter 5.
[23] H. M. Ymeri, “Toupin’s variational principle and electric free enthalpy for dielectric bodies,” Electrical Engineering, vol. 80, pp. 163–167, December 1997.
[24] Proceedings of the Physical Society, Second-order elastic constants of a solid under stress, 1965.
[25] N. Guo, P. Cawley, and D. Hitchings, “The finite element analysis of the vibration characteristics of piezoelectric discs,” Journal of Sound and Vibration, vol. 159, pp. 115–138, November 1992.
[26] L. E. Kinsler, Fundamentals of acoustics. New York: Wiley, 4th ed., 1999.
[27] H. Kuttruff, Ultrasonics Fundamentals and Applications. London: Elsevier Applied Science, 1991. Chapter 2.
[28] R. S. Longhurst, Geometrical and physical optics. London: Longman, 3rd ed., 1973.
[29] F. Depasse, M. A. Paesler, D. Courjon, and J.M. Vigoureux, “Huygens-fresnel principle in the near field,” Optical Society of America, vol. 20, pp. 234–236, February 1995.
[30] J. T. Dehn, “Interference patterns in the near field of a circular piston,” Journal of Acoustical Society of America, vol. 32, pp. 1692–1696, December 1960.
[31] T. Imamura, “Particle velocity and acoustic impedance density of the ultrasonic field by the circular flat transducers,” Journal of Acoustical Society of Japan, vol. 12, no. 3, pp. 115–122, 1991.
[32] B. A. Auld, Acoustic fields and waves in solids. New York: Wiley, 1973.
[33] L. Capineri and L. Masotti, “A beam position sensor for low power infrared laser diodes,” American Institute of Physics, vol. 70, pp. 1341–1348, February 1999.
[34] A. S. Sedra and K. C. Smith, Microelectronic circuits. New York: Oxford University Press, 5th ed., 2004. Chapter 2.
[35] T. Ikeda, Fundamentals of Piezoelectricity. Oxford: Oxford University Press, 1990. Chapter 2.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw