系統識別號 U0026-2707201015352900 論文名稱(中文) 基因歧異性指標相等性試驗之統計評估 論文名稱(英文) Statistical Evaluation of Equivalence Test Based on the Genetic Diversity Index 校院名稱 成功大學 系所名稱(中) 統計學系碩博士班 系所名稱(英) Department of Statistics 學年度 98 學期 2 出版年 99 研究生(中文) 謝裕弘 研究生(英文) Yu-Hung hsieh 學號 r2697104 學位類別 碩士 語文別 英文 論文頁數 121頁 口試委員 口試委員-陳俞成口試委員-潘宏裕指導教授-馬瀰嘉 中文關鍵字 生物多樣性  相等性  核苷酸多樣性指標  Horvitz-Thompson  拔靴法 英文關鍵字 biodiversity  equivalence  nucleotide index  Horvitz-Thompson  bootstrap-based approach 學科別分類 中文摘要 聯合國宣布2010年為「國際生物多樣性年」，以彰顯地球上生命的千姿百態，生物學家時常將生物多樣性定義為「基因、物種及一個地區的生態系統之整體」，由此可知生物多樣性的重要。本研究專注於基因相等性來比較兩基因多樣性指標，特別是核苷酸多樣性指標。傳統多樣性估計忽略了沒有找到的基因類型，當這個基因是一種不可忽略的基因序列時會造成低估基因多樣性的結果。 因此，我們合併Horvitz-Thompson方法及採樣覆蓋範圍的觀念來獲取較佳的基因多樣性估計式，接著利用估計式及two one-sided檢定方法來檢定相等性。利用模擬研究來計算型I誤差發生機率及檢定力。此外在小樣本下，也利用拔靴法和two one-sided方法的結果來比較他們之間型I誤差發生機率及檢定力的差異。 英文摘要 The United Nations marked 2010 as the International Year of Biodiversity - the variety of life on Earth 2010. Biologists often define biodiversity as the "totality of genes, species, and ecosystems of a region". It is clear that the importance of biodiversity. This study is concerned with the equivalence for multi-categorical data and focuses on gene comparison by some genetic diversity index, especially in nucleotide diversity index. The traditional estimator of diversity ignores the missing gene types result in to underestimate the gene diversity, when there is a non-negligible number of unseen genetic sequence. Therefore we combine the concept of Horvitz-Thompson and sample coverage to obtain the better genetic diversity estimator. Then we use the estimator and two one-sided test method to test the equivalence. A simulation study was conducted to empirically investigate the size and power of the proposed methods. Besides, a bootstrap-based approach is also proposed in small sample size and compared with the two one-sided test by the size and power. 論文目次 Chapter 1 Introduction.................................1 Chapter 2 Literature Review............................4 2.1 Three Measurements of Gene Diversity................4 (Ⅰ) Definition .......................................4 (Ⅱ) Maximum Likelihood Estimator...................6 2.2 Bias Corrected Estimator............................7 (Ⅰ) Sample Coverage................................8 (Ⅱ) Horvitz-Thompson Estimator.....................10 2.3 The Statistical Methods for the Equivalence.........12 Chapter 3 Proposed Methods.............................16 3.1 The Estimators of Equivalence Test (S is known).16 3.2 The Estimators of Equivalence Test (S is unknown).19 Chapter 4 Simulation Study.............................23 4.1 Simulation Process..............................23 4.2 Bootstrap Procedure.............................26 4.3 Simulation results..............................26 4.3.1 Based on two one-sided method..............27 4.3.2 Based on bootstrap procedure...............29 4.3.3 Compare two one-sided method and bootstrap method....31 4.4 Real Example........................................32 Chapter 5 Discussion...................................34 Reference...............................................36 Appendix A..............................................39 Appendix B..............................................44 Appendix C..............................................49 Appendix D..............................................51 Appendix E..............................................57 Appendix F..............................................63 Appendix G..............................................87 Appendix H..............................................112 參考文獻 [1] Barker, L., H. Rolka, D. Rolka, and C. Brown. (2001) “Equivalence testing for binomialrandom variables: which test to use?” The American Statistician, 55(4): 279-287. [2] Basharin, G.P. (1959) “On a statistical estimate for the entropy of a sequence of independent random variable.” Theory of Probability and Its Applications, 4, 333-6. [3] Blyth, C.R. (1959) “Note on Estimating Information.” Annals of Mathematical statistics 30, 71-79. [4] Brower JE, Zar JH, von Ende CN. (1998). Field and Laboratory Methods for General Ecology. Boston: McGraw-Hill [5] Casella, G., and Berger, R.L. (2002). Statistical Inference. 2nd edition. Thomson Learning, Australia, 381. [6] Chao, A., Hwang, W.-H., Chen, Y.-C., and Kuo, C.-Y. (2000) Estimating the number of shared species in two communities. Statistica Sinica, 10, 227-46. [7] Chao, A. and Lee, S.-M. (1992) Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87, 210-17. [8] Chao, A., Ma, M.-C., and Yang, M.C.K. (1993) Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80, 193-201. [9] Chao, A. and Shen T.-J. (2003) Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics, 10, 429-43. [10] Charlesworth, B. (1998) “Measures of divergence between populations and the effect of forces that reduce variability”, Molecular Biology and Evolution, 15, 538-43. [11] Diletti, E., Hauschke, D., and Steinijans, V.W. (1991), “Sample Size Determination for Bioequivalence Assessment byMeans of Confidence Intervals,” International Journal of Clinical Pharmacology,Therapy and Toxicology, Vol. 29, 1–8. [12] Efron, B. and Tibshirani, R.J. (1993) An Introduction to the Bootstrap, Chapman and Hall, New York. [13] Esty, W. (1986) The efficiency of Good’s nonparametric coverage estimator. The Annals of Statistics, 14, 1257-60. [14] Horvitz, D.G. and Thompson, D.J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663-85. [15] Hutcheson, K. and Shenton, L.R. (1974) Some moments of an estimate of Shannon’s measure of information. Communications in Statistics, 3, 89-94. [16] Magurran, A.E. (1988) Ecological Diversity and Its Measurement, Princeton, Princeton University Press, New Jersey. [17] Marshall, D. and Allard, R. W. (1970) Isozyme polymorphisms in natural populations of Avena fatua and A. barbata. Heredity 25:373-382. [18] Nei, M. (1987). Molecular Evolutionary Genetics. Columbia Univ. Press, New York. [19] Nei, M., and Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl.Acad. Sci. USA 76: 5269–5273. [20] Phillips, K.F. (1990), “Power of the Two One-Sided Tests Procedure in Bioequivalence,” Journal of Pharmacokinetics and Biopharmaceutics,Vol. 18, No. 2, 137–144. [21] Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. Journal of Pharmokinetics and Biopharmaceutics 15:657–680. [22] Shannon, CE. (1948) A mathematical theory of communication. Bell Syst. Tech. J. 27: 379–423, 623–656 Wright, S. (1965) Evoluation 19, 395-420. [23] Simpson, E.H. (1949) Measurement of diversity. Nature 163: 688. Weir BS. (1989) Sampling properties of gene diversity. In: BrownAHD, Clegg MT. [24] Kahler HL and Weir BS (eds) Plant Population Genetics, Breeding and Genetic Resources. Sinauer Associates,Sunderland, pp 23-42. [25] Zhang, Q.F and Allard, R.W (1986) Sampling variance of the genetic diversity index. Heredity 77:54-55. [26] 陳美惠、袁孝維、林曜松(2004) 台灣地區環頸雉遺傳組成多樣性和族群遺傳結構。臺大實驗林研究報告, Jour. Exp. For. Nat. Taiwan Univ. 18(2): 65-75 (2004). 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2015-07-30起公開。同意授權校外瀏覽/列印電子全文服務，於2015-07-30起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw