進階搜尋


下載電子全文  
系統識別號 U0026-2707201012594600
論文名稱(中文) 大白鼠杏仁體側核長期增益現象之性別差異的機制
論文名稱(英文) Mechanisms Underlying the Sex Difference in Long-Term Potentiation in the Rat Lateral Amygdala
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 98
學期 2
出版年 99
研究生(中文) 周迪侖
研究生(英文) Dylan Chou
電子信箱 p70512@yahoo.com.tw
學號 s3697402
學位類別 碩士
語文別 英文
論文頁數 77頁
口試委員 指導教授-吳豐森
召集委員-黃阿敏
口試委員-游一龍
中文關鍵字 去磷酸酶  β型雌激素受體  雌激素  杏仁體側核  長期增益現象  蛋白激酶A  性別差異  睪固酮 
英文關鍵字 Calcineurin  ERβ  17β-Estradiol  Lateral amygdala  Long-term potentiation  PKA  Sex difference  Testosterone 
學科別分類
中文摘要 長期增益現象(LTP)是當突觸前神經纖維受到高頻電刺激後,突觸間興奮性訊息傳遞持續性增強的一種現象。有實驗證據指出,在杏仁體側核高頻電刺激所誘發的LTP (LA-LTP)是恐懼記憶形成的一種細胞模式。此外,先前的研究顯示,在老鼠海馬迴的LTP以及與海馬迴相關的學習與記憶都有性別差異。但是LA-LTP及與杏仁體側核相關的恐懼記憶是否也有性別差異,目前則不十分清楚。因此在本研究中,我們利用胞外電生理紀錄的技術及藥理學的方法,探討在大白鼠腦薄片中,高頻電刺激所誘發的LA-LTP是否有性別上的差異及其機制。我們的結果顯示,高頻電刺激在雌鼠所誘發的LA-LTP較雄鼠為大。此外,雄鼠較小的LA-LTP可以被電生理紀錄五週前的睪丸切除手術所完全反轉。而且,在切除睪丸的雄鼠的腦薄片中給予睪固酮,可抑制LA-LTP,且其抑制作用呈現濃度依賴效應,此結果顯示,睪固酮有參與在雄鼠LA-LTP比較小的現象中。此外,我們發現在切除睪丸的雄鼠腦薄片中,睪固酮係透過活化去磷酸酶來抑制LA-LTP,且此抑制作用不需要依賴新蛋白質的合成。相同地,雌鼠較大的LA-LTP也可以被電生理紀錄五週前的卵巢切除手術所完全反轉。值得注意的是,在切除卵巢的雌鼠腦薄片中給予雌激素,可增強LA-LTP,且其增強作用呈現濃度依賴效應,但是給予助孕酮,則無增強作用。另外,我們發現在切除卵巢的雌鼠腦薄片中,雌激素係透過活化蛋白激酶A來增強LA-LTP,且此增強作用不需要依賴新蛋白質的合成。有趣的是,在切除卵巢的雌鼠腦薄片中,雌激素係透過活化型雌激素受體來增強LA-LTP。綜合以上結果可知,我們第一次發現大白鼠之LA-LTP是有性別上的差異,且睪固酮與雌激素皆有參與在這種性別差異之中。睪固酮係透過活化去磷酸酶來抑制LA-LTP,而雌激素則透過活化β型雌激素受體及蛋白激酶A,來增強LA-LTP,且二者的作用皆不需要依賴新蛋白質的合成。
英文摘要 Long-term potentiation (LTP) is a phenomenon in which brief high-frequency stimulation (HFS) of a synaptic pathway results in long-term enhancement of the efficacy of connections made by that pathway. LTP in the lateral nucleus of amygdala (LA) has been shown to be intimately involved in the cellular changes that underlie fear memory formation. Previous studies have indicated that there are sex differences in hippocampus LTP and hippocampus-dependent learning tasks. However, it is unclear whether sex differences also occur in LA-LTP and amygdala-dependent fear memory. In the present study, we used the extracellular electrophysiological recording technique and pharmacological methods to characterize the sex difference in HFS-induced LTP at cortico-LA synapses in rat slices. Our results revealed that LA-LTP was significantly greater in female rats than in male rats. In addition, the male’s reduced LA-LTP was completely reversed by testectomy (TX) 5 weeks before electrophysiological recordings. Furthermore, bath application of testosterone concentration-dependently suppressed LA-LTP in TX rats, indicating that testosterone was involved in the male’s reduced LA-LTP. Moreover, testosterone suppressed LA-LTP through a calcineurin-dependent and translation-independent mechanism in TX rats. Similarly, the female’s enhanced LA-LTP was completely reversed by ovariectomy (OVX) 5 weeks before recordings. It is noteworthy that bath application of 17β-estradiol but not progesterone concentration-dependently potentiated LA-LTP in OVX rats. Moreover, 17β-estradiol potentiated LA-LTP through a protein kinase A (PKA)-dependent and translation-independent mechanism in OVX rats. Interestingly, 17β-estradiol acts through estrogen receptor β(ERβ) to potentiate LA-LTP in OVX rats. In conclusion, we demonstrate, for the first time, that there is a sex difference in rat LA-LTP and that both testosterone and 17β-estradiol are involved in this sex difference. In addition, testosterone and 17β-estradiol act through calcineurin and ERβ-PKA, respectively, to modulate rat LA-LTP in a translation-independent manner.
論文目次 Table of Contents
Acknowledgement………………………………………………………I
Abstract in Chinese……………………………………………II
Abstract…………………………………………………………………IV
Abbreviations…………………………………………………………VI
Table of Contents………………………………………………………VII
List of Figures………………………………………………………IX
Introduction………………………………………………………………1
Amygdala, long-term potentiation, and fear memory………………1
Sex differences in hippocampal LTP and hippocampus-dependent learning task……3
Rationale and specific aims of this study………………………………………4
Materials and Methods…………………………………………………6 Animals……………………………………………………………………………6
Bilateral TX………………………………………………………………………6
Bilateral OVX……………………………………………………………………7
Slice preparation……………………………………………………………………7
Extracellular electrophysiological recordings……………………………7
Drugs and chemicals………………………………………………………………8
Statistical analysis……………………………………………………………9
Experimental Design………………………………………………………………9
Results……………………………………………………………………14
Sex difference in LA-LTP occurs in rat slices……………………14
Testosterone mediates male’s reduced LA-LTP………………………14
Testosterone translation-independently suppresses LA-LTP in TX rat slices……15
Testosterone acts through calcineurin to suppress LA-LTP in TX rat slices……16
Testosterone suppresses LA-LTP in female rat slices……………………………17
17β-Estradiol mediates female’s enhanced LA-LTP………………………17
17β-Estradiol but not progesterone concentration-dependently enhances basal LA-fEPSPs in OVX rat slices………………………………………………18
17β-Estradiol translation-independently potentiates LA-LTP in OVX rat slices……………………19
17β-Estradiol acts through PKA to potentiates LA-LTP and basal LA-fEPSPs in OVX rat slices……………………………………………………………20
17β-Estradiol acts through ERβto potentiate LA-LTP in OVX rat slices………………………………20
17β-Estradiol acts through ERβto enhance basal LA-fEPSPs in OVX rat slices…………………………21
17β-Estradiol potentiates LA-LTP and basal LA-fEPSPs in male rat slices…………………22

Discussion………………………………………………………………24
Testosterone translation-independently suppresses LA-LTP through calcineurin cascade……………………………………………………………………………24
17β-Estradiol translation-independently potentiates LA-LTP through PKA-dependent mechanisms…………………………………………………26
17β-Estradiol but not testosterone translation-independently enhances basal LA-fEPSPs through PKA-dependent mechanisms………………………………27
The role of ERα and ERβ in E2-induced enhancement of basal LA-fEPSPs and LA-LTP……………………………………………………………………………28
The sex difference in LA-LTP, the sex difference in hippocampal CA1 LTP, and the sex difference in hippocampal dentate gyrus LTP………………………………29
Conclusion………………………………………………………………31
References………………………………………………………………32
About the Author………………………………………………………77

List of Figures
Figure 1. LA-LTP is greater in female rat slices than that in male rat slices……………………………………………………………………………………44

Figure 2. The male’s reduced LA-LTP is completely reversed by testectomy 5 weeks before electrophysiological recording………………………………………45

Figure 3. Testectomy does not alter basal glutamatergic synaptic transmission in the rat LA slices………………………………………………………………………46

Figure 4. Testosterone suppresses LA-LTP in TX rat slices………………………47

Figure 5. Testosterone suppresses LA-LTP in a concentration-dependent manner in TX rat slices…………………………………………………………………………48

Figure 6. Testosterone does not alter basal LA-fEPSPs in TX rat slices……………………………………………………………………………………49

Figure 7. Testosterone suppresses LA-LTP in a translation-independent manner in TX rat slices…………………………………………………………………………50
Figure 8. Cycloheximide and testosterone do not alter basal LA-fEPSPs in TX rat slices………………………………………………………………………………51

Figure 9. Cyclosporin A reverses testosterone-induced suppression of LA-LTP in TX rat slices……………………………………………52

Figure 10. Cyclosporin A and testosterone do not alter basal LA-fEPSPs in TX rat slices………………………………………………………………53

Figure 11. FK506 reverses testosterone-induced suppression of LA-LTP in TX rat slices………………………………………………………………………54

Figure 12. FK506 and testosterone do not alter basal LA-fEPSPs in TX rat slices……………………………………………………………………55

Figure 13. Testosterone suppresses LA-LTP in female rat slices…………………56

Figure 14. Testosterone does not alter basal LA-fEPSPs in female rat slices……57

Figure 15. The female’s enhanced LA-LTP is completely reversed by ovariectomy 5 weeks before electrophysiological recording………………………………………58

Figure 16. Ovariectomy does not alter basal glutamatergic synaptic transmission in the rat LA slices………………………………………………………………………59

Figure 17. 17β-Estradiol potentiates LA-LTP in OVX rat slices…………………………………………………………………………………60

Figure 18. Progesterone does not alter LA-LTP in OVX rat slices………………………………………………………………………………61

Figure 19. 17β-Estradiol but not progesterone concentration-dependently potentiates LA-LTP in OVX rat slices…………………………………………62

Figure 20. 17β-Estradiol but not progesterone concentration-dependently enhances basal LA-fEPSPs in OVX rat slice…………………………………………………63

Figure 21. 17β-Estradiol potentiates LA-LTP in a translation-independent manner in OVX rat slices…………………………………………………………………64

Figure 22. 17β-Estradiol enhances basal LA-fEPSP in a translation-independent manner in OVX rat slices…………………………………………………………65

Figure 23. 17β-Estradiol acts through PKA to potentiate LA-LTP in OVX rat slices………………………………………………………………………………66

Figure 24. 17β-Estradiol acts through PKA to enhance basal LA-fEPSPs in OVX rat slices…………………………………………………………………………67

Figure 25. DPN potentiates LA-LTP in OVX rat slices…………………………68

Figure 26. PPT does not alter LA-LTP in OVX rat slices…………………………69

Figure 27. DPN but not PPT potentiates LA-LTP in OVX rat slices……………70

Figure 28. 17β-Estradiol does not act through estrogen receptor α to potentiate LA-LTP in OVX rat slices…………………………………………………………71
Figure 29. 17β-Estradiol acts through estrogen receptor β to potentiate LA-LTP in OVX rat slices………………………………………………………………………72

Figure 30. DPN but not PPT concentration-dependently enhances basal LA-fEPSPs in OVX rat slices…………………………………………………73

Figure 31. 17β-Estradiol acts through estrogen receptor β to potentiate basal LA-fEPSPs in OVX rat slices………………………………………………………74

Figure 32. 17β-Estradiol potentiates LA-LTP in male rat slices………………75

Figure 33. 17β-Estradiol enhances basal LA-fEPSPs in male rat slices…………76







參考文獻 References
Aghajanian, G.K. (1995) Electrophysiology of serotonin receptor subtypes and signal
transduction pathways, in Psychopharmacology: The Fourth Generation of Progress (Bloom, F.E. and Kupfer, D.J. eds) pp 451-459, Raven Press, New York.

Aikey, J.L., Byby, J.G., Anmuth, D.M., James, P.J. (2002) Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm. Behav. 42:448-460.

Almeida, O.P., Barclay, L. (2001) Sex hormones and their impact on dementia and depression: a clinical perspective. Expert Opin. Pharmacother. 2:527-535.

Anagnostaras, S.G., Maren, S., DeCola, J.P., Lane, N.I., Gale, G.D., Schlinger, B.A. and Fanselow, M.S. (1998) Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats. Behav. Brain Res. 92:1-9.

Arnold A.P., Breedlove S.M. (1985) Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm. Behav. 19:469–98.

Balthazart, J., Baillien, M., Ball, G.F. (2001) Phorphorylation processes mediate rapid changes of brain aromatase activity. J. Steroid Biochem. 79:261-277.

Bauer, E.P., Schafe, G.E. and LeDoux, J.E. (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22:5239-5249.
Beatty, W.W. and Beatty, P.A. (1970) Hormonal determinants of sex differences in avoidance behavior and reactivity to electric shock in the rat. J. Com. Physiol. Psychol. 73:446-455.

Beatty, W.W. (1992) Gonadal hormones and sex differences in nonreproductive behaviors. In: Gerall, A.A., Moltz, H. and Ward, I.L., editors. Handbook of behavioral neurobiology, vol 11: sexual; differentiation. New York: Plenum, p85-128.

Bramham, C.R. (2008) Local synthesis, actin synamics, and LTP consolidation. Curr. Opin. Neurobiol. 18:524-531.

Casba, L., Tibor, H., Neil, J.M. (2004) Androgens increase spine synapses density in the CA1 hippocampal subfield of ovariectomized female rats. J. Neurosci. 24:495-499.

Chang, Y.J., Yang, C.H., Liang, Y.C., Yeh, C.M., Huang, C.C., Hsu, K.S. (2009) Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor . Hippocampus 19:1142-1150.

Chen, Q.S., Wei, W.Z., Shimahara, T., Xie, C.W. (2002) Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiol. Learn. Mem. 77:354-71.

Denti, A. and Epstein, A. (1972) Sex differences in the acquisition of two kinds of avoidance behavior in rats. Physiol. Behav. 8:611-615.

Doron, N.N. and LeDoux, J.E. (2000) Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J. Comp. Neurol. 425:257-274.

Edinger, K.L., Frye, C.A. (2006) Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats. Horm. Behav. 50:216-222.

Eniko A. Kramar, Lulu Y. Chen, Nicholas J. Brandon, Christopher S. Rex, Feng Liu, Christine M. Gall, and Gary Lynch (2009) Cytoskeletal changes underlie estrogen’s acute effects on synaptic transmission and plasticity. J. Neurosci. 29:12982-12993.

Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L. and Malinow, R. (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6:136-143.

Fontinha, B.M., Diógenes, M.J., Ribeiro, J.A., Sebastião, A.M. (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54:924-33.

Foradori, C.D., Weiser, M.J., Handa, R.J. (2008) Non-genomic actions of androgens. Front. Neuroendocrinol. 29:169-81.

Foy, M.R., Xu, J., Xie, X., Brinton, R.D., Thompson, R.F., Berger, T.W. (1999) 17Beta-estridiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J. Neruophysiol. 81:925-929.

Foy, M.R., Akopian, G., Thompson, RF. (2008) Progesterone regulation of synaptic transmission and plasticity in rodent hippocampus. Learn. Mem. 15:820-822.

Gould, E., Wooley, C.S., Frankgurt, M., McEwen, B.S., (1990) Gonadal steroids regulate dendritic spine in hippocampal pyramidal cells in adulthood. J. Neurosci. 10:1286-1291.

Gu, Q., and Moss, R.L. (1996) 17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade. J. Neurosci. 16:3620-9.

Gupta, R.R., Sen, S., Diepenhorst, L.L., Rudick, C.N., Maren, S. (2001) Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain. Res. 888:356-365

Harley, C.W., Malsbury, C.W., Squires, A., Brown, R.A. (2000) Testosterone Decreases CA1 Plasticity In Vivo in Gonadectomized Male Rats. Hippocampus 10:693-7.

Heinlein CA, Chang C. (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol. Endocrinol. 16:2181-7.

Heynen, A.J., Quinlan, E.M., Bae, D.C., and Bear, M.P. (2000) Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28:527-536.

Humeau, Y., Shaban, H., Bissière, S. and Lüthi, A. (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426:841-845.

Humeau, Y., Reisel, D., Johnson, A.W., Borchardt, T., Jensen, V., Gebhardt, C., Bosch, V., Gass, P., Bannerman, D.M., Good, M.A., Hvalby, Ø., Sprengel, R. and Lüthi, A. (2007) A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 27:10947-10956.

Huang, Y.Y. and Kandel, E.R. (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169-178.

Kerchner, G.A., and Nicoll, R.A. (2008) Slient synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Necursci. 9:813-825.

Kerr, J.E., Allore, R.J., Beck, S.G., Handa, R.J. (1995) Distribution and hormonal regulation of androgen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus. Endocrinology 136:3213–3221.

Kim, J.J., DeCola, J.P., Landeira-Fernandez, J. and Fanselow, M.S. (1991) N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav. Neurosci. 105:126-133.

Kimura, S., Uchiyama, S., Takahashi, H.E., Shibuki, K. (1998) cAMP-dependent long-term potentiation of nitric oxide release from cerebellar parallel fibers in rats. J. Neurosci. 18:8551-8.

Kovacs, E.G., MacLusky, N.J., Leranth, C. (2003) Effects of testosterone hipocampal CA1 spine synaptic density in the male rat are inhibited by fimbria/fornix transaction. Neuroscience 122:807-810.

LeDoux, J.E. (2000) Emotion circuits in the brain. Annu. Rev. Neurosci. 23:155-184.

LeDoux, J.E., Iwata, J., Cicchetti, P. and Reis, D.J. (1988) Different projection of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8:2517-2529.

Li, B., Chen, N., Luo, T., Otsu, Y., Murphy, T.H., Raymond, L.A. (2002) Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat. Neurosci. 5:833-834

Liu, F., Day, M., Muniz, L.C., Bitran, D., Arias, R., Raquel R.S., Grauer, S., Zhang, G., Kelley, C., Pulito, V., Sung, A., Mervis, R.F., Navarra, R. (2008) Activation of estrogen receptor-b regulates hippocampal synaptic plasticity and improves memory. Nat. Neurosci. 11:334-343.

Lin, C.H., Lee, C.C., Gean, P.W. (2003) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol. Pharmacol. 63:44-52.

Lopez de Armentia, M. and Sah, P. (2003) Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala. J. Neurosci. 23:6876-6883.

Luine, V.N., Richards, S.T., Wu, V.Y. and Beck, K.D. (1998) Estridiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters. Horm. Behav. 34:149-162.

Man, H.Y., Yoko, S.A., Huganir, R.L. (2007) Regulation of -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of Glu receptor 1 subunit. Proc. Natl. Acad. Sci. USA 104:3579-3584.

Maren, S. (1995) Sexually dimorphic perforant path long-term potentiation (LTP) in urethane-anesthetized rats. Neurosci. Lett. 196:177-180.

Maren, S. (1999) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci. 22:561-567.

Maren, S., De Oca, B. and Fanselow, M.S. (1994) Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 661:25-34.

Markus, E.J. and Zecevic, M. (1997) Sex differences and estrus cycle changes in hippocampus-dependent fear conditioning. Psychobiology 25:246-252.

McDonald, A. J. (1998) Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55:257-332.

Mitchell, E.A., Herd., M.B., Gunn, B.G., Lambert, J.J., Belelii, D. (2007) Neurosteroid modulation of GABAA receptors: Molecular determinants and significance in health and disease. Neurochem. Int. 52:588-95.

Moita, M.A., Lamprecht, R., Nader, K. and LeDoux, J.E. (2002) A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nat. Neurosci. 5:837-838.

Onuma, H., Lu, Y.F., Tomizawa, K., Moriwaki, A., Tokuda, M., Hatase, O., Matsui., H. (1998) A calcineurin inhibitor, FK506, blocks voltage-gated calcium channel-dependent LTP in the hippocampus. Neurosci. Res. 30:313-9.

Prybylowski, K., Chang, K., Sans, N., Kan, L., Vicini, S., Wenthold R.J. (2005) The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47:845-857.

Quadros P.S., Pfau J.L., Wagner C.K. (2007) Distribution of progesterone receptor immunoreactivity in the fetal and neonatal rat forebrain. J. Comp. Neurol. 504:42-56.

Raz, L., Khan, M.M., Mahesh, V.B., Vadlamudi, R.K., Brann, D.W. (2008) Rapid estrogen signaling in the brain. Neurosignals 16:140-53.

Revelli, A., Massobrio M, Tesarik J. (1998) Nongenomic actions of steroid hormones in reproductive tissues. Endocr. Rev. 19:3-17.

Rissanen, A., Puolivali, J., van Groen, T. and Riekkinen, P.Jr. (1999) In mice tonic estrogen replacement therapy improves non-spatial and spatial memory in a water maze task. NeuroReport 10:1369-1372.

Rodrigues, S.M., Schafe, G.E. and LeDoux, J.E. (2001) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci. 21:6889-6896.

Romanski, L.M., Clugnet, M.C., Bordi, F. and LeDoux, J.E. (1993) Somatosensory and auditory convergence in the lateral nucleus of tha amygdala. Behav. Neurosci. 107:444-450.

Royer, S., Martina, M. and Pare, D. (1999) An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J. Neurosci. 19:10575-10583.

Rumpel, S., LeDoux, J., Zador, A. and Malinow, R. (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83-88.

Sanchez, A.M., Flamine, M.I., Fu, X.D., Mannella, P., Giretti, M.S., Goglia, L., Genazzani, A.R., Simoncini, T. (2009) Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton. Mol. Endocrinol .23:1193-1202.

Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K. and Malinow, R. (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811-1816.

Shingo, A.S. and Kito, S. (2005) Estradiol induces PKA activation through the putative membrane receptor in the living hippocampal neuron. J. Neural. Transm. 112: 1469-1473.

Solum, D.T., Handa, R.J. (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J. Neurosci. 22:2650-2659.

Takahahi, T., Svoboda, K. and Malinow, R. (2003) Experience strengthening transmission by driving AMPA receptors into synapses. Science 299:1585-1588.

Tsvetkov, E., Carlezon, W.A., Benes, F.M., Kandel, E.R. and Bolshakov, V.Y. (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289-300.

Van Troy, M., Huyck, L., Leyman, S., Dhaese, S., Vandekerkhove, J., Ampe, C. (2008) Ins and outs of ADF/cofilin activity regulation. Eur. J. Cell Biol. 87:649-667.

Vasudevan, N., Kow L.M., Pfaff D. (2005) Integration of steroid hormone initiated membrane action to genomic function in the brain. Steroids 70:388–396.

Wang, L.M., Suthana, N.A., Chaudhury, D., Weaver, D.R., Colwell, C.S. (2005) Melatonin inhibits hippocampal long-term potentiation. Eur. J. Neurosci. 22:2231-7.

Warren, S.G. and Juraska, J.M. (1997) Spatial and nonspatial learning across the rat estrous cycle. Behav. Neurosci. 111:259-266.

Weiland, N.G. (1992) Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CA1 region of the hippocampus. Endocrinology 131:662-668.

Weissskopf, M.G. and LeDoux, J.E. (1999) Distinct population of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. J. Neurophysiol. 81:930-934.

Williams, C.L., Barnett, A.M. and Meck, W.H. (1990) Organizational effects of early gonadal steroid secretions on sexual differentiation in spatial memory. Behav. Neurosci. 104:84-97.

Williams, C.L. and Meck, W.H. (1991) The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology 16:155-176.

Wood, G.E. and Shors, T.J. (1998) Stress facilitates classical conditioning in males, but impairs classical conditioning in female through activational effects of ovarian hormones. Proc. Natl. Acad. Sci. USA 95:4066-4071.

Woolley, C.S., Gould, E., Frankfurt, M., McEwen, B.S. (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 10:4035-4039.

Woolley, C.S. and McEwen, B.S. (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12:2549-2554.

Xu, X., Zhang, Z. (2006) Effects of estridiol benzoate on learning-memory behavior and synaptic structure in ovariectomized mice. Life Sci. 79:1553-1560.

Yang, D.W., Pan, B., Han, T.Z., Xie, W. (2004) Sexual dimorphism in the induction of LTP: Critical role of tetanizing stimulation. Life Sci. 75:119-27.

Yeh, S.H., Mao, S.C., Lin, H.C. and Gean, P.W. (2006) Synaptic expression of glutamate receptor after encoding of fear memory in the rat amygdala. Mol. Pharmacol. 69:299-308.

Yu, S.Y., Wu, D.C., Liu, L., Ge, Y. and Wang, Y.T. (2008) Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J. Neurochem. 106:889-899.

Zhang, L., Meng, K., Li, Y.H., Han. T.Z. (2009) NR2A-containing NMDA receptors are required for L-LTP induction and depotentiation in CA1 region of hippocampal slices. Eur. J. Neurosci. 29:2137-44.

Xia, Y., Xing, J.Z., Krukoff, T.L. (2009) Neuroprotective effects of R,R-tetrahydrochrysene against glutamate-induced cell death through anti-excitotoxic and antioxidant actions involving estrogen receptor-dependent and -independent pathways. Neurosci. 162:292-306.

Xia, Z., Storm, D.R. (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6:267-76.




論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw