進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2706201916481700
論文名稱(中文) 台灣地區豐水期雨量非定常性乾旱指數分析
論文名稱(英文) Nonstationary drought index analysis of wet-season rainfall in Taiwan
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 許辰安
研究生(英文) Chen-An Hsu
學號 N86061214
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 指導教授-蕭政宗
口試委員-孫建平
口試委員-張麗秋
中文關鍵字 非定常性  乾旱  標準化降雨指數  GAMLSS 
英文關鍵字 Nonstationary, Drought  Standardized Precipitation Index  GAMLSS 
學科別分類
中文摘要 乾旱是一種自然災害,對農業、水資源、生態和社會具有破壞性的影響,且因為全球氣候變遷和社會發展迅速改變水文循環的變化速率,所導致極端事件發生頻率及降雨強度的改變會使得用於傳統水文分析定常性假設不再適用,因此針對水文特性進行非定常性分析是現階段水資源管理重要的議題之一。
本研究使用位置、尺度、形狀的廣義附加模式(generalized additive models for location, scale, and shape,GAMLSS)進行台灣地區乾旱指數的非定常性分析,乾旱指數採用標準化降雨指數(standardized precipitation index, SPI),本文選用台北、成功、宜蘭、台中、大武、日月潭、高雄、恆春等八個雨量站的年豐水期雨量(五月到十月)和年總雨量來代表台灣北、中、南、東等四個區域之降雨特性,各站紀錄分別為1897-2017、1947-2017、1947-2017、1947-2017、1940-2017、1942-2017、1932-2017、1947-2017。
本研究對各站年豐水期雨量及年雨量進行Mann-Kendall 趨勢檢定和定常性及非定常的乾旱指數分析,藉由gamma分布中,隨時間變化的位置參數和尺度參數即可建立非定常性標準化降雨指數(nonstationary standardized precipitation index,NSPI)。分析結果顯示台灣各站年豐水期降雨量定常性和非定常性標準化降雨指數的趨勢是大致相同的,而定常性和非定常性的SPI值兩者間的差異主要由機率密度函數隨時間的變化所造成。
英文摘要 Drought is a natural disaster that has devastating effects on agriculture, water resouces, ecology and socirty. Global climate change and social development would induce changes of the rate of hydrologic cycles. Intensified frequency and intensity of hydrologic extreme events lead to the hypothesis of stationarity in traditional hydrologic analysis no longer applicable. Nonstationary analysis of hydrologic characteristics thus becomes one of the important issues in water resources management recently. In this study, the generalized additive models for location, scale, and shape (GAMLSS) is adopted for the nonstationary drought analysis in Taiwan. The standardized precipitation index (SPI) is used in this study to characterize droughts. The wet-season (May-October) rainfall and annual rainfall at eight rainfall stations including Taipei, Chengkung, Ilan, Taichung, Tawu, Sun Moon Lake, Kaohsiung and Hengchun, located in the north, central, south, and east regions of Taiwan, are used in this study. The data length covers the period of 1897-2017, 1947-2017, 1947-2017, 1947-2017, 1940-2017, 1942-2017, 1932-2017 and 1947-2017 for these eight stations, respectively. In this study, the Mann-Kendall trend test and the stationary and nonstationary drought index analysis were used for the annual wet-season rainfall and annual rainfall in each stations. The nonstationary standardized precipitation index (NSPI) can be established by using time-varying location and scale parameters in the gamma distribution. The results show that the temporal variations of the stationary and the nonstationary standardized precipitation index of the annual wet-season rainfall and annual rainfall are similar. Differences between the stationary and the nonstationary SPI values is mainly caused by the change of the probability density function over time.
論文目次 摘要 III
Extended Abstract IV
誌謝 IX
目錄 X
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
1-3文獻回顧 2
1-4本文組織架構 6
第二章 研究方法 7
2-1 標準化降雨指數(SPI) 7
2-2 非定常性的標準化降雨指數(NSPI) 10
2-3 位置、尺度和形狀的廣義附加模式(GAMLSS) 11
2-4 Mann-Kendall 趨勢檢定法 15
第三章 研究區域與資料概述 17
3-1 雨量測站位置與概況 17
3-2雨量資料概述 18
第四章 結果與討論 22
4-1 雨量趨勢分析 22
4-2 定常性SPI分析 24
4-3 年豐水期雨量非定常性最佳模式 34
4-4 非定常SPI分析與定常性SPI比較 47
第五章 結論與建議 70
5-1 結論 70
5-2 建議 71
參考文獻 72
參考文獻 1. Abarghouei, H. B., Asadi Zarch M. A., Dastorani, M. T., Kousari, M. R., and Safari Zarch, M. (2011). The survey of climatic drought trend in Iran, Stochastic Environmental Research and Risk Assessment, 25(6), 851-863.
2. Beecham, S., Rashid, M., Chowdhury, R.K. (2014). Statistical downscaling of multi-site daily rainfall in a South Australian catchment using a Generalized Linear Model. International Journal of Climatology. 34 (14), 3654–3670.
3. Cai, W., Cowan, T., Sullivan, A. (2009). Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophysical Research Letters. 36 (11), L11705.
4. Cai, W., van Rensch, P., Cowan, T., Hendon, H.H. (2011). Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. Journal of Climate. 24 (15), 3910–3923.
5. Cheng, L., AghaKouchak, A. (2014). Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Scientific Reports. 4:7093.
6. Dracup, J. (1991). Drought monitoring, Stochastic Hydrology and Hydraulics. 5(4), 261-266.
7. Estrela, M., Peñarrocha, D., Millán, M. (2000). Multi‐annual drought episodes in the Mediterranean (Valencia region) from 1950–1996. A spatio‐temporal analysis. International Journal of Climatology, 20(13), 1599-1618.
8. Evans, A.D., Bennett, J.M., Ewenz, C.M. (2009). South Australian rainfall variability and climate extremes. Climate Dynamics. 33 (4), 477–493.
9. Filliben, J. J. (1975). The probability plot correlation coefficient test for normality. Technometrics,17(1): 111-117.
10. Gibbs, W. (1975). Drought: its definition, delineation and effects. In Drought: Lectures Presented at the 26th Session of the WMO. 11-39.
11. Hernandez, F.J., Hare, J.A. (2009). Evaluating diel, ontogenetic and environmental effects on larval fish vertical distribution using generalized additive models for location, scale and shape. Fisheries Oceanography,18(4): 224-236.
12. Jiang, C., Xiong, L., Xu C-Y, Guo, S. (2015). Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrological Processes. 29(6):1521–1534.
13. Ji, L., and Peters, A.J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87: 85-98.
14. Kendall, M.G. (1975). Rank Correlation Methods. Griffin, London.
15. Lana, X., Serra, C., and Burgueno, A. (2001). Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain). International Journal of Climatology, 21(13): 1669-1691.
16. Liu, H., Chen, L. (2011). Non-parametric and non-linear analysis of stock liquidity with high frequency data in China on GAMLSS model. Journal of Shanxi Finance and Economics University, 33(4): 25-33.
17. Li, J., Wang, Y., Li, S., Hu, R. (2015). A nonstationary standardized precipitation index incorporating climate indices as covariates. Journal of Geophysical Research: Atmospheres. 120 (12).
18. López, J., Francés, F. (2013). Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences. 17 (8), 3189–3203.
19. Mann, H.B. (1945). “Non-parametric test against trend,” Econometrica, 13:245-259
20. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). The relationship of drought frequency and duration to time scales Preprints. 8th Conference on Applied Climatology, pp. 179–184. January 17–22, Anaheim, Calif.
21. Milly, P.C.D., Betancourt, J., Falkenmaek, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier DP, et al. (2008) Stationarity is dead: whiter water management? Science, 319:573-4.
22. Mishra, A., and Singh, V. P. (2009). Analysis of drought severity‐area‐frequency curves using a general circulation model and scenario uncertainty. Journal of Geophysical Research: Atmospheres, 114(D6).
23. Mishra, A., Desai, V., and Singh, V. (2007). Drought forecasting using a hybrid stochastic and neural network model. Journal of Hydrologic Engineering, 12(6), 626-638
24. Mishra, A.K. and Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202-216.
25. Montaseri, M., Amirataee, B. (2016). Comprehensive stochastic assessment of meteorological drought indices. International Journal of Climatology, 37(2), 998-1013.
26. Montazerolghaem, M., Vervoort, W., Minasny, B., McBratney, A. (2016). Long-termvariability of the leading seasonalmodes of rainfall in south-eastern Australia. Weather and Climate Extremes, 13 (2016), 1–14.
27. Ntale, H.K., and Gan, T.Y. (2003). Drought indices and their application to East Africa. International Journal of Climatology, 23(11): 1335-1357.
28. Obeysekera, J., Salas, J. (2016). Frequency of recurrent extremes under nonstationarity. Journal of Hydrologic Engineering: 04016005.
29. Orville, H. D. (1990). AMS statement on meteorological drought. Bulletin of the American Meteorological Society, 71(7), 1021-1023.
30. Quiring, S.M., and Papakryiakou, T.N. (2003). An evaluation of agricultural drought indices for the Canadian prairies. Agricultural and Forest Meteorology,118: 49-62.
31. Rahmat, S.N., Jayasuriya, N., Bhuiyan, M.A., (2017). Short-term droughts forecast using Markov chain model in Victoria, Australia. Theoretical and Applied Climatology.129, 445-457.
32. Rashid, M., Beecham, S., Chowdhury, R.K., (2014). Influence of climate drivers on variability and trends in seasonal rainfall in the Onkaparinga catchment in South Australia: A wavelet approach. 13th International Conference on Urban Drainage (ICUD) 2014, 7–12 September, Kuching, Sarawak, Malaysia.
33. Rashid, M.M., Beecham, S., Chowdhury, R.K., (2015). Statistical characteristics of rainfall in the Onkaparinga catchment in South Australia. Journal of Water and Climate Change. 6(2), 352-373.
34. Rashid, M.M. and Beecham, S. (2019). Development of a non-stationary Standardized Precipitation Index and its application to a South Australian climate. Science of the Total Environment.657, 882-892.
35. Rigby, R.A., Stasinopoulos, D.M. (2005). Generalized additive models for location, scale and shape, Journal of Applied Statistics 54:507–554.
36. Russo, S., Dosio, A., Sterl A., Barbosa P. and Vogt J. (2013). Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices, Journal of Geophysical Research: Atmospheres. 118, 7628–7639, doi:10.1002/jgrd.50571.
37. Sarhadi, A., Burn, D.H., Concepción Ausín,M., Wiper,M.P. (2016). Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. Water Resources Research, 52(3), 2327–2349.
38. Szalai, S., Szinell, C., Zoboki, J. (2000). Drought monitoring in Hungary. In Early Warning Systems for Drought Preparedness and Drought Management, World Meteotological Organization, 182-199.
39. Türkeş, M., Tatl, H. (2009). Use of the standardized precipitation index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. International Journal of Climatology. 29(15):2270–2282.
40. Tallaksen, L. M., Van Lanen, H. A. J. (2004). Hydrological Drought—Processes and Estimation Methods for Streamflow and Groundwater, Developments in Water Science, Vol. 48, Elsevier Science BV, Netherlands
41. Tabari, H., J. Nikbakht, and T. P. Hosseinzadeh (2013). Hydrological drought assessment in Northwestern Iran based on streamflow drought index (SDI), Water Resources. Management., 27(1), 137–151.
42. van Buuren, S., Fredriks, M. (2001). Worm plot: a simple diagnostic device for modeling growth reference curves, Statistics in Medicine 20:1259–77.
43. Verdon-Kidd, D.C., Kiem, A.S. (2010). Quantifying drought risk in a nonstationary climate. Journal of Hydrometeorology. 11(4):1019–1031.
44. Vicente-Serrano, S.M., Cuadrat-Prats, J.M. (2007). Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian peninsula) during he second half of the twentieth century, Theoretical and Applied Climatology, 88(3-4), 247-258.
45. Villarini, G., Smith, J.A., Serinaldi, F., Bales, J., Bates, P.D., Krajewski, W.F. (2009). Flood frequency analysis for nonstationary annual peak records in an urban drainage basin, Advances in Water Resources 32 , 1255–1266
46. Villarini, G., Smith, J.A., Napolitano, F. (2010). Nonstationary modeling of a long record of rainfall and temperature over Rome, Advances in Water Resources 33(10):1256–1267.
47. Vogel, R. M., Kroll, C.N. (1992). Regional geohydrologic‐geomorphic relationships for the estimation of low‐flow statistics. Water Resources Research, 28(9), 2451-2458.
48. Wang, Y., Li, J., Feng, P., Hu, R. (2015). A time-dependent drought index for non-stationary precipitation series. Water Resources Management. 29(15), 5631–5647.
49. Wilhite, D. A., Glantz, M. H. (1985). Understanding the drought phenomenon: the role of definitions. Water International, 10(3), 111-120.
50. Wu, H., Hayes, M.J., Weiss, A., and Hu, Q. (2001). An evaluation of the standardized precipitation index, the China-Z Index and the statistical Z-Score. International Journal of Climatology, 21: 745-758.
51. Yan, K., Wang, Q. Yao, H. Huang, Y.-D. Wang, C.-C. Zhang, W.-G. (2011). Establishment of blood pressure reference centiles modeled by sex, age and height percentiles in children and adolescents aged 7-17 in Xinjiang by GAMLSS program. Chinese Journal of Evidence-based Pediatrics, 6(5): 343-348.
52. Zhang D.-D., Yan D.-H., Wang Y.-C., Lu F., Liu S.-H (2015). GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China, Natural Hazards 77:1037–105
53. Zhu, Y., Wang, W., Singh, V.P., Liu, Y., (2016). Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Science of the Total Environment .571, 1058–1068.
54. Zou, L., Xia, J., Ning, L., She, D.X., Zhan, CS. (2018). Identification of hydrological drought in eastern china using a time-dependent drought index. Water, 10(3), 315.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw