進階搜尋


下載電子全文  
系統識別號 U0026-2706201321345000
論文名稱(中文) Cu2ZnSn(S,Se)4塊材與薄膜合成及性能研究
論文名稱(英文) Synthesis and characterisation of bulk Cu2ZnSn(S,Se)4 and thin film
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 李可鼎
研究生(英文) Ke-Ding Li
學號 n56004240
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-齊孝定
口試委員-陳引幹
口試委員-陳宜君
口試委員-黃榮俊
中文關鍵字 銅鋅錫硫  銅鋅錫硒  脈衝雷射沉積  熔膠-凝膠法 
英文關鍵字 CZTS  CZTSe  Pulsed laser deposition  sol-gel 
學科別分類
中文摘要 本研究藉由固相燒結法製作Cu2ZnSnS4 (CZTS)、Cu2ZnSnSe4 (CZTSe)、Cu2ZnSn(S,Se)4 (CZT(S,Se))之粉體,並壓製燒結成靶材,利用脈衝雷射沉積法(plused laser deposition, PLD)製備薄膜,其後將所成長之薄膜進行退火處理,使用X光繞射(XRD)、X光能量譜(EDS)、掃描電子顯微鏡(SEM)、Hall效應以及吸收光譜等分析方法,探討退火對薄膜成分結構及其光電性質的影響。
為了證明PLD製作CZTS薄膜之優越性,故以溶膠-凝膠法來比較。選擇氯化銅、氯化錫、硫酸鋅以及硫脲,再以乙二醇為溶劑配成溶液,藉由旋轉塗佈到玻璃基板上,進行退火觀察其性質。
由結果分析得知,CZTS, CZTSe和CZT(S,Se)靶材燒結及薄膜退火參數決定於硫和硒揮發速率和成相速率的相互競爭。經GIXRD分析,PLD在室溫沉積之CZTSe薄膜已具有明顯的結晶相。將室溫沉積之CZTSe薄膜封入真空玻璃管於600度退火1小時,其量測能隙值約為1.08eV、載子濃度為2.34x1019 cm-3,屬P型半導體。隨後利用濺鍍機沉積ZnO製作P-N界面,並量測電流與電壓關係,結果呈現典型半導體P-N介面特性。溶膠-凝膠法製成CZTS薄膜與PLD沉積CZTS差異極大,成相所需退火溫度約高200餘度,電性測量方面PLD沉積薄膜亦較溶膠-凝膠製成好。
英文摘要 In this study, bulk samples of Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S,Se)4 (CZT(S,Se)) were synthesized by the solid state reaction method. The sintered pellets were also used as the targets for the pulsed laser deposition (PLD) of thin films. Furthermore, the effects of post-deposition annealing on the structure, optical and electrical properties of CZTS, CZTSe, and CZT(S,Se) thin films were studied by a range of techniques, including X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), Hall effect measurements, optical absorption spectroscopy, etc.
In order to prove the superiority of the PLD growth of CZTS thin films, we also grew the films by the sol-gel method for comparison. The precursors for the sol-gel process were CuCl2, ZnSO4, SnCl4 and thiourea. Ethylene glycol was used as the solvent. The films were deposited on the glass substrates by spin coating and annealed at high temperatures.
The experimental results showed that the sintering parameters of bulk CZTS、CZTSe and CZT(S,Se), as well as the annealing temperatures of the thin films, were dependent on the competition between the speeds of phase formation and the evaporation of Se and S. GIXRD showed that the PLD films deposited at room temperature (RT) already had a crystallized CZTSe phase. The CZTSe films, deposited at RT and annealed at 600℃ for 1 hours in a sealed in glass tube, were P-type semiconductors which showed a band gap of ~1.08 eV and a carrier concentration of 2.34x1019 cm-3. ZnO films were deposited on the CZTSe surface by the magnetron sputtering method and the current vs. voltage curves were measured, which showed a typical behavior of the semiconductor P-N junctions. There are obvious differences between the films deposited by PLD and sol-gel. The annealing temperature for the formation of the CZTS phase was more than 200℃ higher for the films deposed by sol-gel, compared to that of the films deposited by PLD. The electronic transport property of the sol-gel processed CZTS films was also worse than that of the PLD films.
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
表目錄 IX
圖目錄 XII
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 3
第二章 文獻回顧 6
2-1銅鋅錫硫(CZTS)和銅鋅錫硒(CZTSe)薄膜太陽能電池簡介 6
2-1-1金剛石化合物 6
2-1-2銅鋅錫硫 8
2-1-3銅鋅錫硒 9
2-1-4銅鋅錫硫硒 9
2-2脈衝雷射沉積法簡介 11
2-3溶膠-凝膠法簡介 14
第三章 實驗方法與分析儀器 24
3-1 實驗方法與步驟 24
3-1-1 CZTS、CZTSe、CZT(S,Se)靶材製作 24
3-1-2 脈衝雷射沉積CZTS、CZTSe、CZT(S,Se)薄膜 25
3-1-3 CZTS、CZTSe、CZT(S,Se)薄膜退火處理 25
3-1-4非真空製作CZTS薄膜 26
3-1-5 p-n介面製備 27
3-2 使用藥品 32
3-3 使用儀器與分析設備 33
第四章 實驗結果與討論 35
4-1 CZTS、CZTSe、CZT(S,Se)靶材製作 35
4-1-1 CZTS靶材製作 35
4-1-2 CZTSe靶材製作 51
4-1-3 CZT(S,Se)靶材製作 55
4-1-4 CZTS、CZTSe、CZT(S,Se)靶材比較 58
4-2 CZTS、CZTSe、CZT(S,Se)靶材進行PLD鍍膜研究 63
4-3 CZTS、CZTSe、CZT(S,Se)薄膜退火研究 72
4-3-1 CZTS薄膜退火 72
4-3-2 CZTSe薄膜退火 87
4-3-3 CZTSSe薄膜退火 96
4-4 非真空製成CZTS薄膜 101
4-5 p-n界面電性討論 113
4-5-1 PLD成長CZTS薄膜 113
4-5-2 PLD成長CZTSe薄膜 113
4-5-3 非真空成長CZTSe薄膜 114
第五章 結論 119
參考文獻 121
參考文獻 1. I. Repins MC, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, and J. Scharf. Characterization of 19.9%-Efficient CIGS Absorbers. 2008.
2. Suresh Babu G, Kishore Kumar YB, Uday Bhaskar P, Sundara Raja V. Growth and characterization of co-evaporated Cu2ZnSnSe4thin films for photovoltaic applications. Journal of Physics D: Applied Physics. 2008;41(20):205305.
3. Zoppi G, Forbes I, Miles RW, Dale PJ, Scragg JJ, Peter LM. Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications. 2009;17(5):315-9.
4. Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications. 2013;21(1):72-6.
5. Schorr S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films. 2007;515(15):5985-91.
6. Aron Walsh S-HWC, X. G. Gong. DESIGN OF QUATERNARY CHALCOGENIDE PHOTOVOLTAIC ABSORBERS THROUGH CATION MUTATION. 34th IEEE Photovoltaic Specialists Conference.
7. Chen S, Walsh A, Luo Y, Yang J-H, Gong XG, Wei S-H. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Physical Review B. 2010 11/15/;82(19):195203.
8. Katagiri H, Jimbo K, Maw WS, Oishi K, Yamazaki M, Araki H, et al. Development of CZTS-based thin film solar cells. Thin Solid Films. 2009 2/2/;517(7):2455-60.
9. Chen S, Gong XG, Walsh A, Su-Huai W. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters. 2010;96(2):021902--3.
10. Bao W, Ichimura M. First-Principles Study on Influences of Crystal Structure and Orientation on Band Offsets at the CdS/Cu2ZnSnS4 Interface. International Journal of Photoenergy. 2012;2012:1-5.
11. K. Ito TN. “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films”. Jpn J Appl Phys. 1988;27:2094-7.
12. Krustok J, Josepson R, Raadik T, Danilson M. Potential fluctuations in Cu2ZnSnSe4 solar cells studied by temperature dependence of quantum efficiency curves. Physica B: Condensed Matter. 2010 8/1/;405(15):3186-9.
13. Nakamura S, Maeda T, Wada T. Electronic structure of stannite-type Cu2ZnSnSe4 by first principles calculations. physica status solidi (c). 2009;6(5):1261-5.
14. Persson C. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics. 2010;107(5):053710--8.
15. Shavel A, Arbiol J, Cabot A. Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y. Journal of the American Chemical Society. 2010 2010/04/07;132(13):4514-5.
16. Khare A, Himmetoglu B, Cococcioni M, Aydil ES. First principles calculation of the electronic properties and lattice dynamics of Cu2ZnSn(S1-xSex)4. Journal of Applied Physics. 2012;111(12):123704--8.
17. Timmo K, Altosaar M, Raudoja J, Muska K, Pilvet M, Kauk M, et al. Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells. Solar Energy Materials and Solar Cells. 2010 11//;94(11):1889-92.
18. Teghil R, D'Alessio L, De Bonis A, Galasso A, Villani P, Santagata A. Femtosecond pulsed laser ablation and deposition of titanium carbide. Thin Solid Films. 2006 12/5/;515(4):1411-8.
19. Ristoscu C, Socol G, Ghica C, Mihailescu IN, Gray D, Klini A, et al. Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC. Applied Surface Science. 2006 4/30/;252(13):4857-62.
20. Sanz M, Walczak M, de Nalda R, Oujja M, Marco JF, Rodriguez J, et al. Femtosecond pulsed laser deposition of nanostructured TiO2 films. Applied Surface Science. 2009 3/1/;255(10):5206-10.
21. Liu Y, Zhao L, Lian J. Al-doped ZnO films by pulsed laser deposition at room temperature. Vacuum. 2006 9/16/;81(1):18-21.
22. Acquaviva S, Perrone A, Zocco A, Klini A, Fotakis C. Deposition of carbon nitride films by reactive sub-picosecond pulsed laser ablation. Thin Solid Films. 2000 //;373(1):266-72.
23. Voevodin AA, Donley MS. Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review. Surface and Coatings Technology. 1996 8//;82(3):199-213.
24. D’Alessio L, De Bonis A, Galasso A, Morone A, Santagata A, Teghil R, et al. Characterisation of ultrashort pulse laser ablation of SmBaCuO. Applied Surface Science. 2005 7/30/;248(1–4):295-8.
25. Womack M, Vendan M, Molian P. Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene. Applied Surface Science. 2004 1/15/;221(1–4):99-109.
26. Chrisey DB, Hubler GK. Pulsed Laser Deposition of Thin Films: John Wiley & Sons; 1994.
27. G.K. Paul SKS. Materials Letters. 2002;57:742-6.
28. Sun L, He J, Chen Y, Yue F, Yang P, Chu J. Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target. Journal of Crystal Growth. 2012 12/15/;361(0):147-51.
29. Sun Y, Zong K, Zheng H, Wang H, Liu J, Yan H, et al. Ethylene glycol-based dip coating route for the synthesis of Cu2ZnSnS4 thin film. Materials Letters. 2013 2/1/;92(0):195-7.
30. Liu W, Guo B, Mak C, Li A, Wu X, Zhang F. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films. (0).
31. Mali SS, Shinde PS, Betty CA, Bhosale PN, Oh YW, Patil PS. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids. 2012 6//;73(6):735-40.
32. Jimbo K, Kimura R, Kamimura T, Yamada S, Maw WS, Araki H, et al. Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films. 2007 5/31/;515(15):5997-9.
33. Scragg JJ, Dale PJ, Peter LM. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films. 2009 2/2/;517(7):2481-4.
34. Tanaka K, Oonuki M, Moritake N, Uchiki H. thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells. 2009 /5/;93(5):583-7.
35. Jung S, Gwak J, Yun JH, Ahn S, Nam D, Cheong H, et al. Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process. Thin Solid Films. (0).
36. Salomé PMP, Fernandes PA, da Cunha AF. Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers. Thin Solid Films. 2009 2/2;517(7):2531-4.
37. Suresh Babu G, Kishore Kumar YB, Uday Bhaskar P, Raja Vanjari S. Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films. Solar Energy Materials and Solar Cells. 2010 /2;94(2):221-6.
38. Wibowo RA, Yoo H, Hölzing A, Lechner R, Jost S, Palm J, et al. A study of kesterite Cu2ZnSn(Se,S)4 formation from sputtered Cu–Zn–Sn metal precursors by rapid thermal processing sulfo-selenization of the metal thin films. Thin Solid Films. (0).
39. Guo Q, Ford GM, Yang W-C, Walker BC, Stach EA, Hillhouse HW, et al. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. Journal of the American Chemical Society. 2010 2010/12/15;132(49):17384-6.
40. Tverjanovich A, Borisov EN, Vasilieva ES, Tolochko OV, Vahhi IE, Bereznev S, et al. CuInSe2 thin films deposited by UV laser ablation. Solar Energy Materials and Solar Cells. 2006 12/15/;90(20):3624-32.
41. Millon E, Albert O, Etchepare J. Femtosecond pulsed-laser deposition of BaTiO3. Applied Physics A: Materials Science & Processing. 2003;77(1):73-80.
42. Tsega M, Kuo D-H. Characterization and electrical property of the Cu-deficient Cu2ZnSn(S,Se)4 bulks at different sulfur contents. Journal of Alloys and Compounds. 2013 4/25/;557(0):142-6.
43. Lösche A. N. F. MOTT, E. A. DAVIS. Electronic Processes in Non-Crystalline Materials Clarendon-Press, Oxford 1971 437 Seiten. £ 7,50. Kristall und Technik. 1972;7(4):K55-K6.
44. Chen Q-M, Li Z-Q, Ni Y, Cheng S-Y, Dou X-M. Doctor-bladed Cu2ZnSnS4 light absorption layer for low-cost solar cell application. Chinese Physics B. 2012;21(3):038401.
45. Chen S, Yang J-H, Gong XG, Walsh A, Wei S-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Physical Review B. 2010;81(24).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-07-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw