進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2706201112442300
論文名稱(中文) 微小核醣核酸在人類攝護腺癌中調控Pin1基因之後轉錄機制
論文名稱(英文) MicroRNAs Mediate Post-transcriptional Regulation of Pin1 in Prostate Cancer
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 99
學期 2
出版年 100
研究生(中文) 郭勁宏
研究生(英文) Jing-Hong Guo
電子信箱 s96981038@mail.ncku.edu.tw
學號 s96981038
學位類別 碩士
語文別 英文
論文頁數 85頁
口試委員 指導教授-呂佩融
口試委員-沈延盛
口試委員-洪澤民
中文關鍵字 攝護腺癌  Pin1基因  後轉錄機制  微小核醣核酸 
英文關鍵字 prostate cancer  Pin1  post-transcriptional regulation  MciroRNAs  miRNA 
學科別分類
中文摘要 攝護腺癌發生率在台灣男性癌症中排行第六,而且在美國統計資料中也高居男性癌症發生率第一。近年來,許多研究均致力於探討不同基因在攝護腺癌癌化過程中所扮演的角色,而許多研究已證實Pin1基因表現的上升與許多致癌訊號路徑有關。Pin1基因也被證實在攝護腺癌中有過度表現之情形,而且其表現程度亦與臨床預後相關。目前已知Pin1基因會經由E2F轉錄因子所啟動其轉錄機制,然而Pin1在攝護腺癌症中過度表現之機制仍尚未被釐清。在初步研究結果中,Pin1在攝護腺癌細胞株中,mRNA的表現程度並不能反應蛋白質的高度表現,表示Pin1在攝護腺癌症中或許調控在後轉錄機制上。微小核醣核酸(MicroRNAs)為一系列內生性且不轉譯之核醣核酸基因,於後轉錄階段調控蛋白質的表現。首先利用生物資訊學,預測可能與Pin1基因mRNA結合的miRNAs標的,無論在臨床檢體或是細胞株中,其一miRNA表現與Pin1蛋白質表現均呈現負相關性。進一步報導基因分析亦證實該miRNA與Pin1 mRNA直接結合。進一步在細胞中表現該miRNA,會造成Pin1蛋白質的表現下降,亦抑制了細胞生長,以及無黏附生長之能力。反之在良性攝護腺細胞中抑制該miRNA,可看到Pin1蛋白質表現上升,以及促進細胞生長之情形。可知該miRNA在攝護腺癌中調控Pin1表現,並扮演腫瘤抑制之角色。在利用shRNA專一性抑制Pin1表現的細胞中,其細胞生長相關之能力也與該miRNA之結果相吻合。這也證明了該miRNA透過抑制Pin1蛋白質的表現,調控攝護腺癌之癌化過程。而該miRNA與Pin1的調控關係,可作為未來在攝護腺癌中新的診斷或治療標的。
英文摘要 In the United States, prostate cancer is the most commonly diagnosed non-skin cancer. Pin1 expression is a potentially excellent prognostic marker in prostate cancer and implies that Pin1 may also serve as a novel therapeutic target for prostate cancer. Up-regulation of Pin1 has been shown to advance the function of several oncogenic pathways. Previous study shows that Pin1 expression is induced by growth signals through E2F transcription factors. However, the mechanism of Pin1 overexpression in prostate cancer is still unclear. In our preliminary experiments, Pin1 mRNA expression was not correlated to Pin1 protein levels, which indicated that Pin1 may be mediated at post-transcriptional regulation. MciroRNAs are small, endogenously expressed non-coding RNAs that negatively regulate expression of protein-coding genes at the post-transcriptional level. We detected the Pin1 protein and mRNA expression level in many cell line of different cancer type, to investigate whether Pin1 is regulated in post-transcriptional regulation. In our data, there was no significant difference of Pin1 mRNA expression between benign and malignant cancer cell lines, but Pin1 protein expression level was 3-5 folds higher in malignant cancer cell lines than benign cancer cell lines. Bioinformatics tools may provide the putative candidates of miRNA that may bind to 3’UTR of Pin1 mRNA. Using five bioinformatics tools, there were five putative miRNA candidates were predicted to bind to 3’UTR of Pin1 mRNA. Luciferase reporter assay demonstrate that the seed region of the miRNA directly interact with 3’UTR of Pin1 mRNA. We observed that Pin1 protein levels were significant decreased when the miRNA was transient expressed in prostate cancer cell lines. Furthermore, the miRNA decreased the ability of cell proliferation and anchorage-independent growth in prostate cancer cell lines. Functional experiment of Pin1 stable knock-down cell line showed that concur with the phonotype of the miRNA. We described that the miRNA expression was found to be inversely correlated with Pin1 expression in the prostate cancer cell lines and prostate cancer patients. We expect that miRNA play a tumor-suppressive role in prostate cancer. Loss of the miRNA may be a marker of prostate cancer. The restored the miRNA silences the expression of Pin1 protein and depresses the proliferation of cancer cells, which may provide a novel clinical application in prostate cancer therapy.
論文目次 摘要...............................................1
Abstract.........................................2
Abbreviations..................................4
Introduction....................................5
Materials and Methods....................23
Results..........................................35
Conclusion and Discussion..............47
Figures..........................................52
Tables...........................................62
References....................................64
Appendix.......................................71
參考文獻 1. Jemal, A., Siegel, R., Xu, J.Q. & Ward, E. Cancer Statistics, 2010. Ca-Cancer J Clin 60, 277-300 (2010).
2. Crawford, E.D. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology 73, S4-10 (2009).
3. Department of Health, E.Y., Taiwan, R.O.C. Cancer Registry Annual Report (2008).
4. Shen, R., et al. Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology 141, 1699-1704 (2000).
5. Wong, W.Y., Chen, S.C., Chueh, S.C. & Chen, J. The trend of managing prostate cancer in Taiwan. Int J Urol 11, 510-514 (2004).
6. Michael, A., Stephan, C., Schnorr, D., Loening, S.A. & Jung, K. Serum macrophage migration inhibitory factor is not elevated in patients with prostate cancer. Cancer Epidemiol Biomarkers Prev 13, 328-329 (2004).
7. Olsson, A.Y. & Cooper, C.S. The molecular basis of prostate cancer. Br J Hosp Med (Lond) 66, 612-616 (2005).
8. Fearon, E.R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759-767 (1990).
9. Bostwick, D.G. & Brawer, M.K. Prostatic intra-epithelial neoplasia and early invasion in prostate cancer. Cancer 59, 788-794 (1987).
10. Sakr, W.A., Haas, G.P., Cassin, B.F., Pontes, J.E. & Crissman, J.D. The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150, 379-385 (1993).
11. Dong, J.T. Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 20, 173-193 (2001).
12. Sun, J., et al. DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 67, 692-700 (2007).
13. Abate-Shen, C. & Shen, M.M. Molecular genetics of prostate cancer. Genes Dev 14, 2410-2434 (2000).
14. Karan, D., Lin, M.F., Johansson, S.L. & Batra, S.K. Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer 103, 285-293 (2003).
15. Lu, K.P., Hanes, S.D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544-547 (1996).
16. Lu, K.P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175-180 (2003).
17. Namanja, A.T., et al. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Structure 15, 313-327 (2007).
18. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 7, 639-643 (2000).
19. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875-886 (1997).
20. Lu, K.P. & Zhou, X.Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8, 904-916 (2007).
21. Yaffe, M.B., et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957-1960 (1997).
22. Pastorino, L., et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440, 528-534 (2006).
23. Ryo, A., Nakamura, M., Wulf, G., Liou, Y.C. & Lu, K.P. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 3, 793-801 (2001).
24. Ryo, A., et al. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12, 1413-1426 (2003).
25. Stukenberg, P.T. & Kirschner, M.W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 7, 1071-1083 (2001).
26. Shen, M., Stukenberg, P.T., Kirschner, M.W. & Lu, K.P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev 12, 706-720 (1998).
27. Wulf, G.M., Liou, Y.C., Ryo, A., Lee, S.W. & Lu, K.P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 277, 47976-47979 (2002).
28. Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P. & Manley, J.L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev 17, 2765-2776 (2003).
29. Zheng, H., et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849-853 (2002).
30. Zacchi, P., et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853-857 (2002).
31. Kops, O., Zhou, X.Z. & Lu, K.P. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1. FEBS Lett 513, 305-311 (2002).
32. Lu, P.J., Zhou, X.Z., Liou, Y.C., Noel, J.P. & Lu, K.P. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 277, 2381-2384 (2002).
33. Winkler, K.E., Swenson, K.I., Kornbluth, S. & Means, A.R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644-1647 (2000).
34. Lu, K.P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem Sci 29, 200-209 (2004).
35. Alonso, A.D., Zaidi, T., Novak, M., Grundke-Iqbal, I. & Iqbal, K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. P Natl Acad Sci USA 98, 6923-6928 (2001).
36. Lu, K.P., Liou, Y.C. & Vincent, I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's Disease. Bioessays 25, 174-181 (2003).
37. Ryo, A., Liou, Y.C., Lu, K.P. & Wulf, G. Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 116, 773-783 (2003).
38. Wulf, G.M., et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20, 3459-3472 (2001).
39. Pang, R., et al. PIN1 overexpression and beta-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23, 4182-4186 (2004).
40. Liou, Y.C., et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. P Natl Acad Sci USA 99, 1335-1340 (2002).
41. Bao, L., et al. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 164, 1727-1737 (2004).
42. Ryo, A., et al. PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 22, 5281-5295 (2002).
43. You, H., et al. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J Cell Biochem 84, 211-216 (2002).
44. Ryo, A., et al. Stable suppression of tumorigenicity by Pin1-targeted RNA interference in prostate cancer. Clin Cancer Res 11, 7523-7531 (2005).
45. Chao, S.H., Greenleaf, A.L. & Price, D.H. Juglone, an inhibitor of the peptidyl-prolyl isomerase Pin1, also directly blocks transcription. Nucleic Acids Res 29, 767-773 (2001).
46. Basu, A., et al. Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation. Neoplasia 4, 218-227 (2002).
47. Eckerdt, F., et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem 280, 36575-36583 (2005).
48. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993).
49. Ruvkun, G. Molecular biology. Glimpses of a tiny RNA world. Science 294, 797-799 (2001).
50. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39, D152-D157 (2011).
51. Calin, G.A., et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004 (2004).
52. Kent, O.A. & Mendell, J.T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25, 6188-6196 (2006).
53. Volinia, S., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103, 2257-2261 (2006).
54. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531 (2004).
55. Lee, Y., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060 (2004).
56. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235 (2004).
57. Ketting, R.F., et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654-2659 (2001).
58. Meister, G., et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185-197 (2004).
59. Diederichs, S. & Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097-1108 (2007).
60. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gene Dev 18, 1187-1197 (2004).
61. Rhoades, M.W., et al. Prediction of plant microRNA targets. Cell 110, 513-520 (2002).
62. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86 (2004).
63. Esau, C., et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279, 52361-52365 (2004).
64. Poy, M.N., et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226-230 (2004).
65. Lecellier, C.H., et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557-560 (2005).
66. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220 (2005).
67. Chen, C.Z. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353, 1768-1771 (2005).
68. Garzon, R., Calin, G.A. & Croce, C.M. MicroRNAs in Cancer. Annu Rev Med 60, 167-179 (2009).
69. Calin, G.A., et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 15524-15529 (2002).
70. Cimmino, A., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102, 13944-13949 (2005).
71. Costinean, S., et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 103, 7024-7029 (2006).
72. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839-843 (2005).
73. Chang, T.C., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26, 745-752 (2007).
74. He, L., et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134 (2007).
75. Visone, R., et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14, 791-798 (2007).
76. Ma, L., Teruya-Feldstein, J. & Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682-688 (2007).
77. Huang, Q., et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10, 202-210 (2008).
78. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol 18, 505-516 (2008).
79. Yu, F., et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109-1123 (2007).
80. Tavazoie, S.F., et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147-152 (2008).
81. Obernosterer, G., Martinez, J. & Alenius, M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2, 1508-1514 (2007).
82. Bao, L., et al. Prevalent Overexpression of Prolyl Isomerase Pin1 in Human Cancers. The American Journal of Pathology 164, 1727-1737 (2004).
83. Krek, A., et al. Combinatorial microRNA target predictions. Nat Genet 37, 495-500 (2005).
84. Friedman, R.C., Farh, K.K.-H., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19, 92-105 (2009).
85. John, B., et al. Human MicroRNA Targets. PLoS Biol 2, e363 (2004).
86. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11, R90 (2010).
87. Liu, B., et al. Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics 26, 3105-3111 (2010).
88. Kruger, J. & Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34, W451-454 (2006).
89. Lu, K.P. & Zhou, X.Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8, 904-916 (2007).
90. Ishkanian, A.S., et al. High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer. Prostate 69, 1091-1100 (2009).
91. Wei, J.J., et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res 17, 1297-1305 (2011).
92. Porkka, K.P., et al. MicroRNA expression profiling in prostate cancer. Cancer Res 67, 6130-6135 (2007).
93. Ozen, M., Creighton, C.J., Ozdemir, M. & Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788-1793 (2008).
94. Schaefer, A., et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126, 1166-1176 (2010).
95. El Sheikh, S.S., Romanska, H.M., Abel, P., Domin, J. & Lalani el, N. Predictive value of PTEN and AR coexpression of sustained responsiveness to hormonal therapy in prostate cancer--a pilot study. Neoplasia 10, 949-953 (2008).
96. Attard, G., et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 69, 2912-2918 (2009).
97. Meng, F., et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647-658 (2007).
98. Huse, J.T., et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23, 1327-1337 (2009).
99. Yang, H., et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68, 425-433 (2008).
100. Hu, R., et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69, 16-22 (2009).
101. Ribas, J., et al. miR-21: An Androgen Receptor–Regulated MicroRNA that Promotes Hormone-Dependent and Hormone-Independent Prostate Cancer Growth. Cancer Research 69, 7165-7169 (2009).
102. Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10, 704-714 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw