參考文獻 |
B. Cockburn,
Discontinuous Galerkin methods,
ZAMM. Z. Angew. Math. Mech. vol. 83, No. 11, pp. 731-754 (2003).
B. Cockburn, C. W. Shu,
The Runge-Kutta local projection $P^1$-discontinuous Galerkin method for scalar conservation laws,
RAIRO Model. Math. Anal. Numer. vol. 25, No. 3, pp. 337-361 (1991).
B. Cockburn, C. W. Shu,
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework,
Math. Comp. vol. 52, No. 186, pp. 411-435 (1989).
B. Cockburn, C. W. Shu; S. Y. Lin,
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems,
J. Comput. Phys. vol. 84, No. 1, pp. 90-113 (1989).
B. Cockburn, C. W. Shu; S. Hou,
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case,
Math. Comp. vol. 54, No. 190, pp. 545-581 (1990).
B. Cockburn, C. W. Shu,
The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems,
J. Comput. Phys. vol. 141, no. 2, pp. 199-224 (1998).
C. Johnson,
Numerical solutions of partial differential equations by the finite element method,
Cambridge University, pp. 14-48 (1987).
R. J. LeVeque,
Finite Difference Methods for Differential Equations,
University of Washington, 2006.
S. Gottlieb, C. W. Shu; E. Tadmor,
Strong Stability-Preserving High-Order Time Discretization Methods,
Society for Industrial and Applied Mathematics SIAM Review vol. 43, No. 1, pp. 89-112 (2001).
W. H. Reed, T. R. Hill,
Triangular Mesh Methods For The Neutron Transport Equation,
University of California, 1973.
H. L. Atkins, C. W. Shu,
Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations,
AIAA J. 36, 775-782 (1998).
Andreas Klockner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, Ahmed Fasih,
PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation,
arXiv:0911.3456v2 [cs.DC] 18 Nov 2009.
Dimitri Komatitsch, David Michea, Gordon Erlebacher,
Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA,
J.Parallel Distrib.Comput. 69, 451-460 (2009).
Martin Kaser, Michael Dumbser,
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes -I. The two-dimensional isotropic case with external source terms,
Geophys.J.Int 166, 855-877 (2006).
A. Klockner, T. Warburton, J. Bridge, J.S. Hesthaven,
Nodal discontinuous Galerkin methods on graphics processors,
J. Comput. Phys. 228, pp. 7863-7882(2009).
Min-Hung Chen, Bernardo Cockburn, Fernando Reitich
High-order RKDG Methods for Computational Electromagnetics,
Journal of Scientific Computing, Vol. 22 and 23, June (2005).
Paulius Micikevicius,
3D Finite Difference Computation on GPUs using CUDA,
2701 San Tomas Expressway Santa Clara, CA 95050.
吳榮昭,
A High-Order Discontinuous Galerkin Method for Elliptic Interface Problems,
國立成功大學應用數學系研究所碩士論文, 民國98年7月。
馮可安,
A Pseudospectral Scheme for Isotropic Elastic Wave Equations in 2-Dimensional Space,
國立成功大學應用數學系研究所碩士論文, 民國96年6月。
李孟翰,
A High-Order Runge-Kutta Discontinuous Galerkin Method for The Two-Dimensional Wave Equation,
國立成功大學應用數學系研究所碩士論文, 民國99年7月。
http://developer.nvidia.com/category/zone/cuda-zone
NVIDIA CUDA Programming Guide Version 2.3.1,8/26/2009.
|