進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2705201911332300
論文名稱(中文) 土壤環境中有機質對降解石油碳氫化合物之生物可及性研究
論文名稱(英文) Effects of Natural Organic Matters on Bioavailability of Petroleum Hydrocarbons in Soil-Water Environments
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳緻紘
研究生(英文) Chih-Hung Chen
學號 P58011016
學位類別 博士
語文別 英文
論文頁數 132頁
口試委員 指導教授-黃良銘
口試委員-邱成財
口試委員-林財富
口試委員-高志明
口試委員-劉保文
口試委員-張書奇
中文關鍵字 土壤有機質  溶解性有機質  泥漿生物反應器  表觀濃度  分配係數 
英文關鍵字 soil organic matter  dissolved organic matter  slurry microcosm  apparent concentration  contaminant partition coefficient 
學科別分類
中文摘要 近年來,生物復育因為整治費用低廉、對環境較友善等優點,常用來處理受石油碳氫化合物污染的環境,但其缺點為整治時間需時較長,且生物降解效率會取決於環境因子。本研究主要探討油污污染在土壤、地下水中可能影響生物復育效率的環境因子和策略。環境因子中土壤有機質對非極性有機化合物會有分配作用,而分配作用對於生物降解的影響程度卻尚未釐清,是故本研究主要為探討土壤有機質對微生物降解碳氫化合物之影響,以評估採生物復育法現地整治成效不一之關鍵因子。本研究之取結構不同的三種石油碳氫化合物為目標物染物,研究在不同土壤有機質含量的土壤中生物降解的生物可及性差異。實驗設計採用批次方法,分別探討溶解性有機相以及土壤‐水相兩種環境下、不同土壤有機質比例的油污生物降解效率。本研究從泥炭土中萃取腐植酸與黃酸,作為溶解性有機物的來源,以進行溶解性有機相的生物可及性批次實驗。結果顯示,Heptadecane在低土壤有機質(2%)的土壤其降解速率比在高土壤有機質(20%)土壤還要快四倍。同樣的,pristane在240小時的生物降降解後在2%土壤有機質含量的泥漿反應器中可達95%的去除率,然而在20%土壤有機質含量的泥漿反應器中只有38%的降解率。另外在溶解性有機物添加的批次實驗中,結果發現添加溶解性有機物有助於目標碳氫化合物的降解,整體降解速率會隨添加的溶解性有機物濃度增加而提高。在土壤水相環境下,污染物受土壤有機物與溶解性有機物的分配作用,而分配在水相的濃度高低與生物降解速率有正相關。藉此,有機污染物在土壤中之流布以及反應動力將有助於整治策略的選擇,降解模式也有助於環境系統的建立,提供未來生物復育技術應用於污染場址整治之潛勢評估。
英文摘要 The bioremediation efficiency of petroleum hydrocarbons in natural soil-water systems is regulated by active microbial populations and other system parameters. Relevant factors include the transfer rate of petroleum contaminants from a medium into microorganisms, the partitioning behavior of contaminants from water into the soil organic matter (SOM), and the influence of the dissolved organic matter (DOM) on the contaminant level in water. The objectives of this study were aimed to determine the correlation among bioavailability of petroleum hydrocarbons, SOM content, and DOM level in soil-water systems. Heptadecane, pristane, and decylcyclohexane were selected as model hydrocarbon contaminants. The bioavailability of target contaminants in soil was examined using soils of different SOM contents (2% and 20%) in slurry bioreactors. In addition, the contaminant bioavailability as affected by various DOM levels (0 – 100 mg C/L) was also examined. The results showed that the SOM content affected the degrading rate of hydrocarbons significantly, where the rate constant was 4 times higher in 2% SOM microcosm than in the 20% SOM bioreactor for heptadecane degradation. Similarly, the pristane degrading efficiency after 240 h operation was 95% for the 2% SOM microcosm and only 38% for the 20% SOM microcosm. The hydrocarbon degradation rates in water phase were found to be enhanced by the added DOM level. A positive correlation existed between the contaminant bioavailability and the contaminant level in water as impacted by the SOM content in soil and the DOM level in water.
論文目次 摘要 I
Abstract II
Acknowledgment III
Table of Contents VI
List of Tables X
List of Figures XII
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Contamination of petroleum hydrocarbons 4
2.2 Biodegradation of petroleum hydrocarbons 9
2.3 Bioremediation 11
2.3.1 Operating parameter during bioremediation 12
2.3.2 Strategy for enhancing biodegradation 14
2.4 Soil matrix 15
2.4.1 Soil components and properties 15
2.4.2 Polarity, aliphaticity, and aromaticity 17
2.5 Bioavailability 19
2.5.1 What is bioavailability 19
2.5.2 The bioavailability issue in soil environment 21
2.5.3 Bioavailability determination 24
Chapter 3 Materials and Methods 27
3.1 Framework 27
3.2 Chemicals and medium 29
3.3 Microorganisms 33
3.4 Soil 35
3.4.1 Soil property 35
3.4.2 Contaminated Soil preparation 36
3.4.3 DOMs isolation from SOM 36
3.5 Experimental designs 38
3.5.1 Biodegradability of model contaminants via different consortia 38
3.5.2 DOM characterization test 38
3.5.3 Effect of DOM on the solubility of hydrocarbons 39
3.5.4 Time-series batch test of hydrocarbons for different organic-matter levels 40
3.6 Analytical method 42
3.6.1 TPH extraction and analysis 42
3.6.2 Permanent gas in headspace 46
3.6.3 Total organic carbons analysis 47
3.6.4 DOM characterization 48
3.6.5 Bulk water quality and soil property 50
Chapter 4 Results and Discussion 53
4.1 Biodegradability test 53
4.1.1 Bioactivity of each microcosm for different target hydrocarbons 53
4.1.2 The stoichiometric relationship for TPH consumption and corresponded products increasement 55
4.2 Bioavailability affected by SOM content 62
4.2.1 Individual model contaminant degradation by slurry microcosm with different SOM contents 62
4.2.2 Degradation of model hydrocarbons mixture with different SOM contents in slurry microcosms 66
4.2.3 DOM releasing from SOM during biodegradation 69
4.3 DOM extraction and characterization 71
4.3.1 HA and FA isolation 71
4.3.2 DOM characterization of isolated HA and FA 72
4.4 Bioavailability affected by DOM level 82
4.4.1 Degradation of hydrocarbons with different DOM levels 82
4.4.2 Apparent concentration enhanced by DOM 89
4.4.3 DOM increments by bioactivity 94
4.5 The interaction of SOM, DOM and NAPL 100
4.5.1 Simulating apparent concentration in SOM-DOM environments 100
4.5.2 Contaminants distribution in soil-water environments 105
Chapter 5 Conclusions and Suggestions 109
5.1 Conclusions 109
5.2 Suggestions 110
Chapter 6 References 111

參考文獻 Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. Bioremediation, biostimulation and bioaugmention: a review. International Journal of Environmental Bioremediation & Biodegradation, 3(1), 28-39. (2015).
Akiyama, S., Doi, M., Arai, Y., Nakao, Y., & Fukuda, H. Production of yeast biomass. In: Google Patents. (1975).
Alarcón, A., Davies Jr, F. T., Autenrieth, R. L., & Zuberer, D. A. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation, 10(4), 251-263. (2008).
Alberts, J. J., & Takács, M. Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms. Organic Geochemistry, 35(3), 243-256. (2004).
Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology, 34(20), 4259-4265. (2000).
APHA. Standard methods for the examination of water and wastewater, 21st edn. Washington, DC: American Public Health Association. (2005).
Atlas, R. M., & Bragg, J. Bioremediation of marine oil spills: when and when not–the Exxon Valdez experience. Microbial biotechnology, 2(2), 213-221. (2009).
Atlas, R. M., & Philp, J. Bioremediation. Applied microbial solutions for real-world environmental cleanup: ASM press. (2005).
Atlas, R. M., Stoeckel, D. M., Faith, S. A., Minard-Smith, A., Thorn, J. R., & Benotti, M. J. Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the Deepwater Horizon well blowout. Environmental Science & Technology, 49(14), 8356-8366. (2015).
Baghoth, S., Dignum, M., Grefte, A., Kroesbergen, J., & Amy, G. Characterization of NOM in a drinking water treatment process train with no disinfectant residual. Water Science and Technology: Water Supply, 9(4), 379-386. (2009).
Baker, A., Tipping, E., Thacker, S., & Gondar, D. Relating dissolved organic matter fluorescence and functional properties. Chemosphere, 73(11), 1765-1772. (2008).
Barbash, J., & Roberts, P. V. Volatile organic chemical contamination of groundwater resources in the US. Journal (Water Pollution Control Federation), 58(5), 343-348. (1986).
Berwick, L., Greenwood, P. F., & Smernik, R. J. The use of MSSV pyrolysis to assist the molecular characterisation of aquatic natural organic matter. Water Research, 44(10), 3039-3054. (2010).
Bierkens, J., & Geerts, L. Environmental hazard and risk characterisation of petroleum substances: A guided “walking tour” of petroleum hydrocarbons. Environment International, 66, 182-193. (2014).
Blin, J., Volle, G., Girard, P., Bridgwater, T., & Meier, D. Biodegradability of biomass pyrolysis oils: Comparison to conventional petroleum fuels and alternatives fuels in current use. Fuel, 86(17-18), 2679-2686. (2007).
Borah, D., & Yadav, R. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egyptian Journal of Petroleum, 26(1), 181-188. (2017).
Bosma, T. N., Middeldorp, P. J., Schraa, G., & Zehnder, A. J. Mass transfer limitation of biotransformation: quantifying bioavailability. Environmental Science & Technology, 31(1), 248-252. (1996).
Bossert, I., Kachel, W. M., & Bartha, R. Fate of hydrocarbons during oily sludge disposal in soil. Appl. Environ. Microbiol., 47(4), 763-767. (1984).
Brooijmans, R. J., Pastink, M. I., & Siezen, R. J. Hydrocarbon‐degrading bacteria: the oil‐spill clean‐up crew. Microbial biotechnology, 2(6), 587-594. (2009).
Bushnell, L., & Haas, H. The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41(5), 653. (1941).
Chaineau, C., Rougeux, G., Yepremian, C., & Oudot, J. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry, 37(8), 1490-1497. (2005).
Chen, B., & Ding, J. Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. Journal of hazardous materials, 229, 159-169. (2012).
Chen, B., Johnson, E. J., Chefetz, B., Zhu, L., & Xing, B. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. Environmental Science & Technology, 39(16), 6138-6146. (2005).
Chen, C. H., Whang, L. M., Pan, C. L., Yang, C. L., & Liu, P. W. G. Immobilization of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater. International Biodeterioration & Biodegradation, 124, 62-72. (2017).
Chen, J., LeBoeuf, E. J., Dai, S., & Gu, B. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere, 50(5), 639-647. (2003).
Chiou, C. T. Partition and adsorption of organic contaminants in environmental systems: John Wiley & Sons, Hoboken, New Jersey, USA. (2002).
Chiou, C. T., Malcolm, R. L., Brinton, T. I., & Kile, D. E. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environmental Science & Technology, 20(5), 502-508. (1986).
Chiou, C. T., Peters, L. J., & Freed, V. H. A physical concept of soil-water equilibria for nonionic organic compounds. Science, 206(4420), 831-832. (1979).
Chiou, C. T., Porter, P. E., & Schmedding, D. W. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology, 17(4), 227-231. (1983).
Chiou, C. T., Porter, P. E., & Shoup, T. D. Reply to comments by MacIntyre and Smith on: partition equilibria of nonionic organic compounds between soil-organic matter and water. Environmental Science & Technology, 18(4), 295-297. (1984).
Chiou, C. T., Shoup, T. D., & Porter, P. E. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Organic Geochemistry, 8(1), 9-14. (1985).
Cleveland, C. C., & Liptzin, D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85(3), 235-252. (2007).
Colwell, R. R., Walker, J. D., & Cooney, J. J. Ecological aspects of microbial degradation of petroleum in the marine environment. CRC critical reviews in microbiology, 5(4), 423-445. (1977).
Cooney, J. D., & Gehrs, C. W. Effects of temperature, feeding and acridine on development and mortality of eggs and nauplh of Diaptomus clavipes schacht. Aquatic Toxicology, 5(3), 197-209. (1984).
Crocker, F. H., Guerin, W. F., & Boyd, S. A. Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environmental Science & Technology, 29(12), 2953-2958. (1995).
Das, N., & Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011. (2011).
Doerffer, J. Types and characteristics of oil. In Oil Spill Response in the Marine Environment (pp. 9-82). New York: Pergamon Press. (1992).
EdPlace. Fractional Distillation. Retrieved from https://www.edplace.com/worksheet_info/science/keystage3/year8/topic/753/2904/fractional-distillation (Jun 20, 2019).
Ehlers, G. A., & Loibner, A. P. Linking organic pollutant (bio) availability with geosorbent properties and biomimetic methodology: a review of geosorbent characterisation and (bio) availability prediction. Environmental Pollution, 141(3), 494-512. (2006).
Ehlers, L. J., & Luthy, R. G. Peer reviewed: contaminant bioavailability in soil and sediment. In: ACS Publications. (2003).
Taiwan EPA. Soil and groundwater pollution remediation fund. Retrieved from https://sgw.epa.gov.tw/en (2019).
Fester, T., Giebler, J., Wick, L. Y., Schlosser, D., & Kästner, M. Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Current Opinion in Biotechnology, 27, 168-175. (2014).
Fine, P., Graber, E., & Yaron, B. Soil interactions with petroleum hydrocarbons: abiotic processes. Soil Technology, 10(2), 133-153. (1997).
Geider, R., & Roche, J. L. Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. 262, 1–17. doi: 10.1017. S0967026201003456. (2016).
Ghosh, U., Zimmerman, J. R., & Luthy, R. G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environmental Science & Technology, 37(10), 2209-2217. (2003).
Goossens, H., & Zwolsman, J. J. An evaluation of the behaviour of pollutants during dredging activities. Terra et aqua, 20-28. (1996).
Grosser, R. J., Friedrich, M., Ward, D. M., & Inskeep, W. P. Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl. Environ. Microbiol., 66(7), 2695-2702. (2000).
Haderlein, A., Legros, R., & Ramsay, B. Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil. Applied Microbiology and Biotechnology, 56(3-4), 555-559. (2001).
Haftka, J. J., Parsons, J. R., Govers, H. A., & Ortega‐Calvo, J. J. Enhanced kinetics of solid‐phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter. Environmental toxicology and chemistry, 27(7), 1526-1532. (2008).
Haitzer, M., Höss, S., Traunspurger, W., & Steinberg, C. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—a review—. Chemosphere, 37(7), 1335-1362. (1998).
Harms, H., & Zehnder, A. Bioavailability of sorbed 3-chlorodibenzofuran. Appl. Environ. Microbiol., 61(1), 27-33. (1995).
Hatzinger, P. B., & Alexander, M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environmental Science & Technology, 29(2), 537-545. (1995).
He, S.J., Li, H.J., Zhao, M.X., Zhao, W.T., Wang, L.X., Luo, L.B., & He, W.P. Experimental Research on the High Energy Level Dynamic Compaction with Humidification Operation to Collapsible Loess in the Arid Region in Northwest China [J]. Journal of Railway Engineering Society, 7. (2011).
Ho, Y., Jackson, M., Yang, Y., Mueller, J., & Pritchard, P. Characterization of fluoranthene-and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. Journal of Industrial Microbiology and Biotechnology, 24(2), 100-112. (2000).
Hoogsteen, M. J., Lantinga, E. A., Bakker, E. J., Groot, J., & Tittonell, P. A. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European journal of soil science, 66(2), 320-328. (2015).
Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T., McBratney, A., Pozza, L. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma, 241, 180-209. (2015).
Hudson, N., Baker, A., Ward, D., Reynolds, D. M., Brunsdon, C., Carliell-Marquet, C., & Browning, S. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Science of the Total Environment, 391(1), 149-158. (2008).
Hung, W.N., Lin, T.F., Chiu, C.H., & Chiou, C. T. On the use of a freeze-dried versus an air-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption. Environmental Pollution, 160, 125-129. (2012).
Hur, J., Lee, D.H., & Shin, H.S. Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Organic Geochemistry, 40(10), 1091-1099. (2009).
Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124(2), 247-256. (2003).
Johnsen, A. R., Wick, L. Y., & Harms, H. Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71-84. (2005).
Kördel, W., Bernhardt, C., Derz, K., Hund-Rinke, K., Harmsen, J., Peijnenburg, W., Terytze, K. Incorporating availability/bioavailability in risk assessment and decision making of polluted sites, using Germany as an example. Journal of hazardous materials, 261, 854-862. (2013).
Kang, J. W. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology Letters, 36(6), 1129-1139. (2014).
Kang, S., & Xing, B. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology, 39(1), 134-140. (2005).
Kickham, P., Otton, S. V., Moore, M. M., Ikonomou, M. G., & Gobas, F. A. Relationship between biodegradation and sorption of phthalate esters and their metabolites in natural sediments. Environmental toxicology and chemistry, 31(8), 1730-1737. (2012).
Knightes, C. D., & Peters, C. A. Aqueous phase biodegradation kinetics of 10 PAH compounds. Environmental engineering science, 20(3), 207-218. (2003).
Koma, D., Hasumi, F., Chung, S.Y., & Kubo, M. Biodegradation of n-alkylcyclohexanes by co-oxidation via multiple pathways in Acinetobacter sp. ODDK71. Journal of Bioscience and Bioengineering, 95(6), 641-644. (2003).
Lamy, E., Tran, T. C., Mottelet, S., Pauss, A., & Schoefs, O. Relationships of respiratory quotient to microbial biomass and hydrocarbon contaminant degradation during soil bioremediation. International Biodeterioration & Biodegradation, 83, 85-91. (2013).
Leahy, J. G., & Colwell, R. R. Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 54(3), 305-315. (1990).
Lewandowski, I., Schmidt, U., Londo, M., & Faaij, A. The economic value of the phytoremediation function–assessed by the example of cadmium remediation by willow (Salix ssp). Agricultural systems, 89(1), 68-89. (2006).
Li, A., Hu, J., Li, W., Zhang, W., & Wang, X. Polarity based fractionation of fulvic acids. Chemosphere, 77(10), 1419-1426. (2009).
Li, K., Xing, B., & Torello, W. A. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environmental Pollution, 134(2), 187-194. (2005).
Lin, C.L., Shen, F.T., Tan, C.C., Huang, C.C., Chen, B.Y., Arun, A., & Young, C.C. Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiological Research, 167(7), 395-404. (2012).
Lin, T.C., Pan, P.T., & Cheng, S.S. Ex situ bioremediation of oil-contaminated soil. Journal of hazardous materials, 176(1-3), 27-34. (2010).
Lin, T.C., Young, C.C., Ho, M.J., Yeh, M.S., Chou, C.L., Wei, Y.H., & Chang, J.-S. Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. Journal of Bioscience and Bioengineering, 99(5), 466-472. (2005).
Liu, G., Yan, B., & Chen, G. Technical review on jet fuel production. Renewable and Sustainable Energy Reviews, 25, 59-70. (2013).
Liu, P.W. G., Yang, D.S., Tang, J.Y., Hsu, H.W., Chen, C.H., & Lin, I.K. Development of a cell immobilization technique with polyvinyl alcohol for diesel remediation in seawater. International Biodeterioration & Biodegradation, 113, 397-407. (2016).
Liu, W., Xu, S., Xing, B., Pan, B., & Tao, S. Nonlinear binding of phenanthrene to the extracted fulvic acid fraction in soil in comparison with other organic matter fractions and to the whole soil sample. Environmental Pollution, 158(2), 566-575. (2010).
Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., Westall, J. C. Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology, 31(12), 3341-3347. (1997).
Marschner, B., & Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113(3-4), 211-235. (2003).
Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83(11), 1431-1442. (2011).
Mechlińska, A., Gdaniec-Pietryka, M., Wolska, L., & Namieśnik, J. Evolution of models for sorption of PAHs and PCBs on geosorbents. TrAC Trends in Analytical Chemistry, 28(4), 466-482. (2009).
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. Bioremediation approaches for organic pollutants: a critical perspective. Environment International, 37(8), 1362-1375. (2011).
Moubasher, H., Hegazy, A., Mohamed, N., Moustafa, Y., Kabiel, H., & Hamad, A. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration & Biodegradation, 98, 113-120. (2015).
Musikavong, C., & Wattanachira, S. Reduction of dissolved organic matter in terms of DOC, UV-254, SUVA and THMFP in industrial estate wastewater treated by stabilization ponds. Environmental Monitoring and Assessment, 134(1-3), 489-497. (2007).
Muthukumar, N., Mohanan, S., Maruthamuthu, S., Subramanian, P., Palaniswamy, N., & Raghavan, M. Role of Brucella sp. and Gallionella sp. in oil degradation and corrosion. Electrochemistry Communications, 5(5), 421-425. (2003).
Nam, K., Chung, N., & Alexander, M. Relationship between organic matter content of soil and the sequestration of phenanthrene. Environmental Science & Technology, 32(23), 3785-3788. (1998).
Nichols, E. G., Cook, R. L., Landmeyer, J. E., Atkinson, B., Malone, D. R., Shaw, G., & Woods, L. Phytoremediation of a Petroleum‐Hydrocarbon Contaminated Shallow Aquifer in Elizabeth City, North Carolina, USA. Remediation Journal, 24(2), 29-46. (2014).
Omar, S., & Rehm, H. J. Degradation of n-alkanes by Candida parapsilosis and Penicillium frequentans immobilized on granular clay and aquifer sand. Applied Microbiology and Biotechnology, 28(1), 103-108. (1988).
Ortega-Calvo, J. J., & Saiz-Jimenez, C. Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl. Environ. Microbiol., 64(8), 3123-3126. (1998).
Ortega-Calvo, J. Strategies to increase bioavailability and uptake of hydrocarbons. Cellular Ecophysiology of Microbe, 1-12. (2017).
Ortega-Calvo, J., Tejeda-Agredano, M., Jimenez-Sanchez, C., Congiu, E., Sungthong, R., Niqui-Arroyo, J., & Cantos, M. Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? Journal of hazardous materials, 261, 733-745. (2013).
Ortega-Calvo, J. J., Harmsen, J., Parsons, J. R., Semple, K. T., Aitken, M. D., Ajao, C., Oliver, R. From bioavailability science to regulation of organic chemicals. In: ACS Publications. (2015).
Oudot, C., Ternon, J.F., & Lecomte, J. Measurements of atmospheric and oceanic CO2 in the tropical Atlantic: 10 years after the 1982-1984 FOCAL cruises. Tellus B: Chemical and Physical Meteorology, 47(1-2), 70-85. (1995).
Panagopoulos, D., Jahnke, A., Kierkegaard, A., & MacLeod, M. Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: Measurements and polyparameter linear free energy relationships. Environmental Science & Technology, 49(20), 12161-12168. (2015).
Panagopoulos, D., Kierkegaard, A., Jahnke, A., & MacLeod, M. Evaluating the salting-out effect on the organic carbon/water partition ratios (K OC and K DOC) of linear and cyclic volatile methylsiloxanes: measurements and polyparameter linear free energy relationships. Journal of Chemical & Engineering Data, 61(9), 3098-3108. (2016).
Perminova, I. V., Grechishcheva, N. Y., & Petrosyan, V. S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environmental Science & Technology, 33(21), 3781-3787. (1999).
Pettit, R. E. Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Research, 1-17. (2004).
Piccolo, A., Cozzolino, A., Conte, P., & Spaccini, R. Polymerization of humic substances by an enzyme-catalyzed oxidative coupling. Naturwissenschaften, 87(9), 391-394. (2000).
Prince, R. C. Petroleum spill bioremediation in marine environments. Critical Reviews in Microbiology, 19(4), 217-240. (1993).
Providenti, M. A., Lee, H., & Trevors, J. T. Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of industrial Microbiology, 12(6), 379-395. (1993).
Raber, B., Kögel-Knabner, I., Stein, C., & Klem, D. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere, 36(1), 79-97. (1998).
Rahman, K. S., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90(2), 159-168. (2003).
Ramsay, M. A., Swannell, R. P., Shipton, W. A., Duke, N. C., & Hill, R. T. Effect of bioremediation on the microbial community in oiled mangrove sediments. Marine Pollution Bulletin, 41(7-12), 413-419. (2000).
Ras, M., Girbal-Neuhauser, E., Paul, E., Spérandio, M., & Lefebvre, D. Protein extraction from activated sludge: an analytical approach. Water Research, 42(8-9), 1867-1878. (2008).
Reid, B. J., Jones, K. C., & Semple, K. T. Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environmental Pollution, 108(1), 103-112. (2000).
Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., . . . Deng, R. Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610, 1154-1163. (2018).
Riding, M. J., Doick, K. J., Martin, F. L., Jones, K. C., & Semple, K. T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application. Journal of hazardous materials, 261, 687-700. (2013).
Rittmann, B. E., & McCarty, P. L. Environmental biotechnology: principles and applications (1 ed.). Boston: McGraw-Hill Education. (2001).
Robles-González, I. V., Fava, F., & Poggi-Varaldo, H. M. A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories, 7(1), 5. (2008).
Rodríguez, F. J., & Núñez, L. A. Characterization of aquatic humic substances. Water and Environment Journal, 25(2), 163-170. (2011).
Rončević, S., Spasojević, J., Maletić, S., Jazić, J. M., Isakovski, M. K., Agbaba, J., Dalmacija, B. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons. Environmental Science and Pollution Research, 23(4), 3239-3246. (2016).
Salloum, M. J., Chefetz, B., & Hatcher, P. G. Phenanthrene sorption by aliphatic-rich natural organic matter. Environmental Science & Technology, 36(9), 1953-1958. (2002).
Sarkar, D., Ferguson, M., Datta, R., & Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution, 136(1), 187-195. (2005).
Schaefer, M., & Juliane, F. The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Applied soil ecology, 36(1), 53-62. (2007).
Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. In: ACS Publications. (2004).
Semple, K. T., Doick, K. J., Wick, L. Y., & Harms, H. Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environmental Pollution, 150(1), 166-176. (2007).
Semple, K. T., Morriss, A., & Paton, G. I. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European journal of soil science, 54(4), 809-818. (2003).
Semple, K. T., Riding, M. J., McAllister, L. E., Sopena-Vazquez, F., & Bending, G. D. Impact of black carbon on the bioaccessibility of organic contaminants in soil. Journal of hazardous materials, 261, 808-816. (2013).
Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., & Cosme, R. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3(2), 193-209. (2000).
Small, D. A., Chang, W., Toghrol, F., & Bentley, W. E. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 74(1), 176-185. (2007).
Spencer, R. G., Bolton, L., & Baker, A. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Research, 41(13), 2941-2950. (2007).
Stevenson , F. J. Humus Chemistry: Genesis, Composition, Reactions (2nd ed.). New York: Wiley. (1994).
Sugioka, M. The Relationship Between UV-VIS Absorption and Structure of Organic Compounds. UV Talk Letter February. Shimadzu, 2, 5-6. (2009).
Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A., & Hamzah, A. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90, 115-122. (2014).
Tejeda-Agredano, M., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J., & Cantos, M. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biology and Biochemistry, 57, 830-840. (2013).
Ti, Q., Gu, C., Liu, C., Cai, J., Bian, Y., Yang, X., Jiang, X. Comparative evaluation of influence of aging, soil properties and structural characteristics on bioaccessibility of polychlorinated biphenyls in soil. Chemosphere, 210, 941-948. (2018).
Troquet, J., Larroche, C., & Dussap, C.G. Evidence for the occurrence of an oxygen limitation during soil bioremediation by solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 103-112. (2003).
Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231-241. (2011).
Ulrici, W. Contaminated soil areas, different countries and contaminants, monitoring of contaminants. Biotechnology: Environmental Processes II, 11, 5-41. (2000).
USEPA. Treatment technologies for site cleanup: Annual status report. (EPA-542-R 99-001). Washington, DC(1999).
USEPA. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents. (EPA 542-R-00-008). (2000).
USEPA. Use of Bioremediation at Superfund Sites. (EPA 542-R-01-019). Retrieved from www.epa.gov/sites/production/files/2015-08/documents/bioremediation_542r01019.pdf (2001).
USEPA. In Situ Treatment Technologies for Contaminated Soil: Engineering Forum Issue Paper. (EPA 542-F-06-013). Retrieved from www.epa.gov/sites/production/files/2015-04/documents/tsp_issue_paper_542f06013.pdf (2006.).
USEPA. Estimation programs interface suite™ for microsoft® windows, V 4.11. Washington, DC, USA: United States Environmental Protection Agency. (2012).
USEPA. National remedy review board briefing regarding reible model calculations for the Berry's Creek study area for the ventron/velsicol site. (538125). Retrieved from https://semspub.epa.gov/src/document/02/538125 (2017a).
USEPA. Superfund Remedy Report. (EPA-542-R-17- 001). Washington DC(2017b).
Van Beilen, J. B., & Funhoff, E. G. Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology, 74(1), 13-21. (2007).
Vermeulen, J. Ripening of PAH and TPH polluted sediments: determination and quantification of bioremediation parameters. (PhD), Wageningen University, Wageningen, The Netherlands. (2007).
Vidali, M. Bioremediation. an overview. Pure and Applied Chemistry, 73(7), 1163-1172. (2001).
Villaverde, J., Posada-Baquero, R., Rubio-Bellido, M., & Morillo, E. Effect of hydroxypropyl-β-cyclodextrin on diuron desorption and mineralisation in soils. Journal of Soils and Sediments, 13(6), 1075-1083. (2013).
von der Weid, I., Marques, J. M., Cunha, C. D., Lippi, R. K., dos Santos, S. C., Rosado, A. S., . . . Seldin, L. Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Systematic and Applied Microbiology, 30(4), 331-339. (2007).
Wakeham, S., Goodwin, J., & Davis, A. Distributions and fate of volatile organic compounds in Narragansett Bay, Rhode Island. Canadian Journal of Fisheries and Aquatic Sciences, 40(S2), s304-s321. (1983).
Wang, L., Wu, F., Zhang, R., Li, W., & Liao, H. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau. Journal of Environmental Sciences, 21(5), 581-588. (2009).
Wang, X., & Brusseau, M. L. Solubilization of some low-polarity organic compounds by hydroxypropyl-. beta.-cyclodextrin. Environmental Science & Technology, 27(13), 2821-2825. (1993).
Weisman, W. Analysis of petroleum hydrocarbons in environmental media (Vol. 1): Amherst Scientific Publishers. (1998).
Whang, L.M., Liu, P.W. G., Ma, C.C., & Cheng, S.S. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Journal of hazardous materials, 151(1), 155-163. (2008).
Wong, F., & Bidleman, T. F. Hydroxypropyl-β-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil. Environmental Pollution, 158(5), 1303-1310. (2010).
Wu, Q., Yang, Q., Zhou, W., & Zhu, L. Sorption characteristics and contribution of organic matter fractions for atrazine in soil. Journal of Soils and Sediments, 15(11), 2210-2219. (2015).
Xi, M., Zi, Y., Wang, Q., Wang, S., Cui, G., & Kong, F. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China. Physics and Chemistry of the Earth, Parts A/b/c, 103, 35-44. (2018).
Yang, L., Lai, C.-T., & Shieh, W. K. Biodegradation of dispersed diesel fuel under high salinity conditions. Water Research, 34(13), 3303-3314. (2000).
Yu, C., Kamboj, S., Wang, C., & Cheng, J.J. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures. (2015).
Zahed, M. A., Aziz, H. A., Isa, M. H., Mohajeri, L., & Mohajeri, S. Optimal conditions for bioremediation of oily seawater. Bioresource Technology, 101(24), 9455-9460. (2010).
Zhang, Y., Ma, X., & Ran, Y. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling. Environmental Pollution, 185, 213-218. (2014).
Zhao, L., Zhu, L., Zhao, S., & Ma, X. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. Science of the Total Environment, 572, 169-176. (2016).
Zimmer, T., Ohkuma, M., Ohta, A., Takagi, M., & Schunck, W.-H. The CYP52 Multigene Family of Candida maltosa Encodes Functionally Diversen-Alkane-Inducible Cytochromes P450. Biochemical and Biophysical Research Communications, 224(3), 784-789. (1996).
Zinjarde, S., & Pant, A. Hydrocarbon degraders from tropical marine environments. Marine Pollution Bulletin, 44(2), 118-121. (2002).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw