進階搜尋


下載電子全文  
系統識別號 U0026-2705201502474200
論文名稱(中文) 鱗翅目幼蟲的宿主專一性影響其腸道菌組成
論文名稱(英文) Host specificity of Lepidoptera larvae affects gut microbiota
校院名稱 成功大學
系所名稱(中) 生命科學系
系所名稱(英) Department of Life Sciences
學年度 103
學期 2
出版年 104
研究生(中文) 黃兆立
研究生(英文) Chao-Li Huang
學號 L58991019
學位類別 博士
語文別 中文
論文頁數 59頁
口試委員 指導教授-蔣鎮宇
召集委員-黃浩仁
口試委員-江友中
口試委員-洪國翔
口試委員-王浩文
中文關鍵字 腸道菌相  宿主專一性  鱗翅目  多源基因體學  共生 
英文關鍵字 gut microbiota  host specificity  Lepidoptera  metagenomics  symbiosis 
學科別分類
中文摘要 鱗翅目幼蟲多為植食性,以葉片、花朵、果實為主要的食物來源,因物種特性而異。這類幼蟲賴以為生的植物又被稱作為宿主 (host),依宿主專一性的有無可分為專食性者 (specialist) 和廣食性者 (generalist)。幼蟲宿主專一性的成因眾說紛紜,至今仍未有定論。由於植食性昆蟲常需仰賴腸道中內生細菌協助分解纖維素以取得能量,其腸道菌相可能與其宿主專一性有關。因此,本研究以十字花科專食性的大菜螟 (Crocidolomia binotalis) 與紋白蝶 (Pieris rapae) 加上廣食性的斜紋夜蛾 (Spodoptera litura) 做為模式,分組放養於三種十字花科蔬菜 (芥菜 Brassica juncea、油菜 Brassica napus、蘿蔔 Raphanus sativus) 並收集新鮮糞便樣本,以兩對位於 16S rRNA 基因上的引子增殖細菌 DNA 作為分子條碼,並利用 illumina 技術進行大規模定序進而推估幼蟲腸道菌相組成。本研究結果顯示三種幼蟲無論取食何種植物,其腸道菌相均以厚壁菌門、放線菌門、變形菌門為主要組成,幼蟲共有的細菌在各組均佔總豐度的 90% 以上,顯示這些細菌可能為幼蟲腸道的核心菌群。幼蟲的核心菌群以腸桿菌科和腸球菌科最為優勢,其中腸桿菌科的菌屬組成十分複雜,可能與其腸道共生的角色有關;反觀腸球菌科的優勢菌屬僅有 Enterococcus,暗示該菌可能為近期拓殖的伺機性致病菌。雖然鱗翅目幼蟲的腸道菌種類變異不大,親緣較為接近的大菜螟與斜紋夜蛾在菌相組成上差異較大,反而同為專食性的紋白蝶與大菜螟呈現較一致的菌相。此外,專食性幼蟲的腸道菌相多樣性顯著高於廣食性幼蟲,且其菌相組成不易隨取食植物種類而變動。更有趣的是,專食性幼蟲腸道中有益菌的相對豐度亦高於廣食性幼蟲。綜合以上發現,能在鱗翅目幼蟲腸道共生的菌群可能處處可見,而專食性幼蟲經天擇作用適應其宿主植物的防禦機制,有效保留有益菌並維持腸道菌的多樣性;反觀廣食性幼蟲的腸道菌相為高度變動,可能需仰賴複雜的食物來源來增加腸道菌的多樣性,若固定取食單種植物易使伺機性致病菌爆發而危及蟲體健康。
英文摘要 Most Lepidoptera larvae (caterpillars) are herbivores and feed with various tissues from host plants, such as leaves, flowers, and fruits. Generalist caterpillars eat any available plants, whereas specialists accept only a few plants within a genus or a family. To date, how host specificity was evolved is still under debate. As gut microbiota has been shown to be involved in nutrition provision, e.g., cellulose- degrading, fermentation, and vitamin-producing, it might be associated with host specificity. In this study, three Lepidoptera species, crucifer specialists Crocidolomia binotalis and Pieris rapae as well as generalist Spodoptera litura, were chosen to examine the association among gut microbiota, diet, and host specificity. The composition of gut microbiota was determined by Illumina sequencing with bacterial 16S amplicons from fresh fecal samples. Here, three bacterial phyla, Firmicutes, Actinobacteria, and Proteobacteria, dominated the bacterial communities of all caterpillar species regardless of diet, revealing the presence of core gut microbiome. In the core gut microbiome, members of Enterobacteriaceae and Enterococcaceae were the most abundant. According to the genus composition of the family, Enterobacteriaceae might have a commensal symbiotic role in gut of caterpillar, while Enterococcaceae was possibly an opportunistic pathogen. Interestingly, although C. binotalis is taxonomically closer to S. litura, its gut microbiota was more similar with P. rapae, which shares the host specificity on crucifers. In addition, both specialists showed higher species richness, species diversity, and proportion of beneficial bacteria in gut, suggesting host specificiy was likely triggered a better transition of gut bacterial communities under natural selection.
論文目次 目錄
摘要 I
Extended abstract II
誌謝 VI
表目錄 IX
圖目錄 X
壹、緒論 1
一、昆蟲的食性與取食策略 1
二、十字花科植物的抗蟲機制與昆蟲的應對 2
三、植食性昆蟲的腸道微生物相 4
四、DNA 條碼與多源基因體學 6
五、紋白蝶、斜紋夜蛾、大菜螟介紹 8
六、研究動機 10
貳、材料與方法 11
一、 實驗材料 11
二、 實驗方法 11
三、 資料分析 13
參、結果 16
一、三種鱗翅目幼蟲之腸道細菌相組成 16
二、幼蟲腸道細菌相之分類組成分析 19
三、細菌類群差異分布分析 22
肆、討論 24
一、鱗翅目幼蟲腸道菌相的維持與改變 24
二、鱗翅目幼蟲宿主專一性與其腸道菌相的關聯性 27
三、專食性幼蟲腸道存在更多的有益菌 30
伍、結論 33
陸、參考文獻 34
附錄 45
參考文獻 Aharon, Y., Pasternak, Z., Ben Yosef, M., Behar, A., Lauzon, C., Yuval, B. and Jurkevitch, E. (2012) Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Applied and Environmental Microbiology, 79, 303-313.
Aires, A., Mota, V.R., Saavedra, M.J., Rosa, E.A.S. and Bennett, R.N. (2009) The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. Journal of Applied Microbiology, 106, 2086-2095.
Alef, K. and Nannipieri, P. (1995) Methods in applied soil microbiology and biochemistry London: Academic Press.
Baas-Becking, L.G.M. (1934) Geobiologie; of inleiding tot de milieukunde: WP Van Stockum & Zoon NV.
Baldani, J.I., Baldani, V.L.D., Seldin, L. and Dobereiner, J. (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic Bacteriology, 36, 86-93.
Berendsen, R.L., Pieterse, C.M.J. and Bakker, P.A.H.M. (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
Bohlmann, H. (2004) The best of both worlds in plant protection. Nature Biotechnology, 22, 682-683.
Bones, A.M. and Rossiter, J.T. (1996) The myrosinase‐glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 97, 194-208.
Bones, A.M. and Rossiter, J.T. (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67, 1053-1067.
Borm, S.v., Buschinger, A., Boomsma, J.J. and Billen, J. (2002) Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proceedings of the Royal Society B: Biological Sciences, 269, 2023-2027.
Breznak, J. (2000) Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. Termites: evolution, sociality, symbioses, ecology, 209-231.
Breznak, J.A. and Brune, A. (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453-487.
Brinkmann, N., Martens, R. and Tebbe, C.C. (2008) Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Applied and Environmental Microbiology, 74, 7189-7196.
Broderick, N.A., Raffa, K.F., Goodman, R.M. and Handelsman, J. (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Applied and Environmental Microbiology, 70, 293-300.
Chandler, J.A., Morgan Lang, J., Bhatnagar, S., Eisen, J.A. and Kopp, A. (2011) Bacterial communities of diverse drosophila species: ecological context of a host–microbe model system. PLoS Genetics, 7, e1002272.
Cho, S., Zwick, A., Regier, J.C., Mitter, C., Cummings, M.P., Yao, J., Du, Z., Zhao, H., Kawahara, A.Y., Weller, S., Davis, D.R., Baixeras, J., Brown, J.W. and Parr, C. (2011) Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? Systematic Biology, 60, 782-796.
Chouaia, B., Gaiarsa, S., Crotti, E., Comandatore, F., Degli Esposti, M., Ricci, I., Alma, A., Favia, G., Bandi, C. and Daffonchio, D. (2014) Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biology and Evolution, 6, 912-920.
Cirimotich, C.M., Dong, Y., Clayton, A.M., Sandiford, S.L., Souza-Neto, J.A., Mulenga, M. and Dimopoulos, G. (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science, 332, 855-858.
Colman, D.R., Toolson, E.C. and Takacs-Vesbach, C.D. (2012) Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21, 5124-5137.
Corby-Harris, V., Pontaroli, A.C., Shimkets, L.J., Bennetzen, J.L., Habel, K.E. and Promislow, D.E.L. (2007) Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Applied and Environmental Microbiology, 73, 3470-3479.
Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R. and Wittwer, P. (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol, 23, 321-329.
Cox, C.R. and Gilmore, M.S. (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infection and Immunity, 75, 1565-1576.
Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., Bandi, C. and Daffonchio, D. (2010) Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environmental Microbiology, 76, 6963-6970.
Dantur, K.I., Enrique, R., Welin, B. and Castagnaro, A.P. (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express, 5.
Dematheis, F., Kurtz, B., Vidal, S. and Smalla, K. (2012) Microbial communities associated with the larval gut and eggs of the western corn rootworm. PLoS ONE, 7, e44685.
DeSalle, R., Graham, S.W., Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Newmaster, S.G., Husband, B.C., Percy, D.M., Hajibabaei, M. and Barrett, S.C.H. (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS ONE, 3, e2802.
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G.L. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072.
Dias, C., Aires, A. and Saavedra, M. (2014) Antimicrobial activity of isothiocyanates from cruciferous plants against methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Molecular Sciences, 15, 19552-19561.
Dillon, R.J. and Dillon, V.M. (2004) The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology, 49, 71-92.
Dillon, R.J., Webster, G., Weightman, A.J., Dillon, V.M., Blanford, S. and Charnley, A.K. (2008) Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. Journal of Invertebrate Pathology, 97, 265-272.
Dufour, V., Stahl, M. and Baysse, C. (2014) The antibacterial properties of isothiocyanates. Microbiology, 161, 229-243.
Engel, P. and Moran, N.A. (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37, 699-735.
Gupta, A.K., Nayduch, D., Verma, P., Shah, B., Ghate, H.V., Patole, M.S. and Shouche, Y.S. (2012) Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiology Ecology, 79, 581-593.
Handelsman, J. (2004) Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68, 669-685.
Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. and Goodman, R.M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, R245-R249.
Hebert, P.D. and Gregory, T.R. (2005) The promise of DNA barcoding for taxonomy. Systematic Biology, 54, 852-859.
Hirsch, P.R., Mauchline, T.H. and Clark, I.M. (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biology & Biochemistry, 42, 878-887.
Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. and Fukatsu, T. (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biology, 4, e337.
Huang, C.-L., Jian, F.-Y., Huang, H.-J., Chang, W.-C., Wu, W.-L., Hwang, C.-C., Lee, R.-H. and Chiang, T.-Y. (2014) Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 66, 77-88.
Indiragandhi, P., Anandham, R., Madhaiyan, M. and Sa, T. (2008) Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology, 56, 327-333.
Indiragandhi, P., Anandham, R. and Sa, T. (2011) Functional significance of insect gut bacteria and their role in host insect processes, development, and crop production. In Bacteria in Agrobiology: Plant Growth Responses (Maheshwari, D.K. ed: Springer Berlin Heidelberg, pp. 309-334.
Jang, M., Hong, E. and Kim, G.-H. (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica Vegetables. Journal of Food Science, 75, M412-M416.
Johnson, K.S. and V. Barbehenn, R. (2000) Oxygen levels in the gut lumens of herbivorous insects. Journal of Insect Physiology, 46, 897-903.
Kaeberlein, T. (2002) Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 296, 1127-1129.
Kaltenpoth, M. (2009) Actinobacteria as mutualists: general healthcare for insects? Trends in Microbiology, 17, 529-535.
Kim, M.G. and Lee, H.S. (2009) Growth-inhibiting activities of phenethyl isothiocyanate and its derivatives against intestinal bacteria. Journal of Food Science, 74, M467-M471.
Kjaer, A. and Jensen, R.B. (1956) isothiocyanates XX *. 4-pentenyl isothiocyanate, a new mustard oild occurring as a glucoside (glucobrassicanapin) in nature. Acta Chemistry Scandinavia, 10, 1365-1371.
Koch, H. and Schmid-Hempel, P. (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences, 108, 19288-19292.
Lehman, R.M., Lundgren, J.G. and Petzke, L.M. (2008) Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their modification by laboratory rearing and antibiotic treatment. Microbial Ecology, 57, 349-358.
Li, Q., Eigenbrode, S., Stringam, G.R. and Thiagarajah, M.R. (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. Journal of Chemical Ecology, 26, 2401-2419.
Li, Y., Fu, K., Gao, S., Wu, Q., Fan, L., Li, Y. and Chen, J. (2013) Impact on bacterial community in midguts of the Asian corn borer larvae by transgenic Trichoderma strain overexpressing a heterologous chit42 gene with chitin-binding domain. PLoS ONE, 8, e55555.
Liang, X., Fu, Y., Tong, L. and Liu, H. (2014) Microbial shifts of the silkworm larval gut in response to lettuce leaf feeding. Applied Microbiology and Biotechnology, 98, 3769-3776.
Lin, X.-L., Pan, Q.-J., Tian, H.-G., Douglas, A.E. and Liu, T.-X. (2014) Bacteria abundance and diversity of different life stages of Plutella xylostella(Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. Insect Science, 22, 375-385.
Martinson, V.G., Danforth, B.N., Minckley, R.L., Rueppell, O., Tingek, S. and Moran, N.A. (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20, 619-628.
Mason, K.L., Stepien, T.A., Blum, J.E., Holt, J.F., Labbe, N.H., Rush, J.S., Raffa, K.F. and Handelsman, J. (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio, 2, e00065-00011.
Masson-Boivin, C., Giraud, E., Perret, X. and Batut, J. (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology, 17, 458-466.
McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R. and Hugenholtz, P. (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal, 6, 610-618.
Montagna, M., Gómez-Zurita, J., Giorgi, A., Epis, S., Lozzia, G. and Bandi, C. (2014) Metamicrobiomics in herbivore beetles of the genus Cryptocephalus (Chrysomelidae): toward the understanding of ecological determinants in insect symbiosis. Insect Science, 22, 340-352.
Moran, N.A., Plague, G.R., Sandström, J.P. and Wilcox, J.L. (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proceedings of the National Academy of Sciences, 100, 14543-14548.
Mullaney, J.A., Kelly, W.J., McGhie, T.K., Ansell, J. and Heyes, J.A. (2013) Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from Enterobacteriaceae. Journal of Agricultural and Food Chemistry, 61, 3039-3046.
Muller, K., Vogelweith, F., Thiéry, D., Moret, Y. and Moreau, J. (2014) Immune benefits from alternative host plants could maintain polyphagy in a phytophagous insect. Oecologia, 177, 467-475.
Mutanen, M., Wahlberg, N. and Kaila, L. (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society B: Biological Sciences.
Nardi, J.B., Mackie, R.I. and Dawson, J.O. (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? Journal of Insect Physiology, 48, 751-763.
Nishida, R. (2002) Sequestration of defensive substances from plants by Lepidoptera. Annual Review of Entomology, 47, 57-92.
Oliver, K.M. and Martinez, A.J. (2014) How resident microbes modulate ecologically-important traits of insects. Current Opinion in Insect Science, 4, 1-7.
Pandiarajan, J., Suganya, T. and Krishnan, M. (2014) Gut resident microbes in Groundnut pest Amsacta albistriga (Red Hairy Caterpillar). Current Research in Microbiology and Biotechnology, 2, 340-346.
Paulson, A.R., von Aderkas, P. and Perlman, S.J. (2014) Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus). BMC Microbiology, 14, 224.
Pernice, M., Simpson, S.J. and Ponton, F. (2014) Towards an integrated understanding of gut microbiota using insects as model systems. Journal of Insect Physiology, 69, 12-18.
Pesek, J., Buchler, R., Albrecht, R., Boland, W. and Zeth, K. (2011) Structure and mechanism of iron translocation by a Dps protein from Microbacterium arborescens. Journal of Biological Chemistry, 286, 34872-34882.
Pichersky, E. and Gang, D.R. (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science, 5, 439-445.
Piel, J. (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proceedings of the National Academy of Sciences, 99, 14002-14007.
Ramirez-Puebla, S.T., Servin-Garciduenas, L.E., Jimenez-Marin, B., Bolanos, L.M., Rosenblueth, M., Martinez, J., Rogel, M.A., Ormeno-Orrillo, E. and Martinez-Romero, E. (2012) Gut and root microbiota commonalities. Applied and Environmental Microbiology, 79, 2-9.
Rao, C.R. (1982) Gini-Simpson index of diversity: A characterization, generalization and applications. Utilitas Math, 21, 273-282.
Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. In Plant Molecular Evolution: Springer, pp. 93-113.
Ratzka, A., Vogel, H., Kliebenstein, D.J., Mitchell-Olds, T. and Kroymann, J. (2002) Disarming the mustard oil bomb. Proceedings of the National Academy of Sciences, 99, 11223-11228.
Regier, J.C., Mitter, C., Zwick, A., Bazinet, A.L., Cummings, M.P., Kawahara, A.Y., Sohn, J.-C., Zwickl, D.J., Cho, S., Davis, D.R., Baixeras, J., Brown, J., Parr, C., Weller, S., Lees, D.C. and Mitter, K.T. (2013) A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (Moths and Butterflies). PLoS ONE, 8, e58568.
Robinson, C.J., Schloss, P., Ramos, Y., Raffa, K. and Handelsman, J. (2009) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microbial Ecology, 59, 199-211.
Rosselló‐Mora, R. and Amann, R. (2001) The species concept for prokaryotes. FEMS Microbiol Rev, 25, 39-67.
Russell, J.A., Moreau, C.S., Goldman-Huertas, B., Fujiwara, M., Lohman, D.J. and Pierce, N.E. (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences, 106, 21236-21241.
Santo Domingo, J., Kaufman, M., Klug, M., Holben, W., Harris, D. and Tiedje, J. (1998) Influence of diet on the structure and function of the bacterial hindgut community of crickets. Molecular Ecology, 7, 761-767.
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Bolchacova, E., Voigt, K., Crous, P.W., Miller, A.N., Wingfield, M.J., Aime, M.C., An, K.D., Bai, F.Y., Barreto, R.W., Begerow, D., Bergeron, M.J., Blackwell, M., Boekhout, T., Bogale, M., Boonyuen, N., Burgaz, A.R., Buyck, B., Cai, L., Cai, Q., Cardinali, G., Chaverri, P., Coppins, B.J., Crespo, A., Cubas, P., Cummings, C., Damm, U., de Beer, Z.W., de Hoog, G.S., Del-Prado, R., Dentinger, B., Dieguez-Uribeondo, J., Divakar, P.K., Douglas, B., Duenas, M., Duong, T.A., Eberhardt, U., Edwards, J.E., Elshahed, M.S., Fliegerova, K., Furtado, M., Garcia, M.A., Ge, Z.W., Griffith, G.W., Griffiths, K., Groenewald, J.Z., Groenewald, M., Grube, M., Gryzenhout, M., Guo, L.D., Hagen, F., Hambleton, S., Hamelin, R.C., Hansen, K., Harrold, P., Heller, G., Herrera, C., Hirayama, K., Hirooka, Y., Ho, H.M., Hoffmann, K., Hofstetter, V., Hognabba, F., Hollingsworth, P.M., Hong, S.B., Hosaka, K., Houbraken, J., Hughes, K., Huhtinen, S., Hyde, K.D., James, T., Johnson, E.M., Johnson, J.E., Johnston, P.R., Jones, E.B.G., Kelly, L.J., Kirk, P.M., Knapp, D.G., Koljalg, U., Kovacs, G.M., Kurtzman, C.P., Landvik, S., Leavitt, S.D., Liggenstoffer, A.S., Liimatainen, K., Lombard, L., Luangsa-ard, J.J., Lumbsch, H.T., Maganti, H., Maharachchikumbura, S.S.N., Martin, M.P., May, T.W., McTaggart, A.R., Methven, A.S., Meyer, W., Moncalvo, J.M., Mongkolsamrit, S., Nagy, L.G., Nilsson, R.H., Niskanen, T., Nyilasi, I., Okada, G., Okane, I., Olariaga, I., Otte, J., Papp, T., Park, D., Petkovits, T., Pino-Bodas, R., Quaedvlieg, W., Raja, H.A., Redecker, D., Rintoul, T.L., Ruibal, C., Sarmiento-Ramirez, J.M., Schmitt, I., Schussler, A., Shearer, C., Sotome, K., Stefani, F.O.P., Stenroos, S., Stielow, B., Stockinger, H., Suetrong, S., Suh, S.O., Sung, G.H., Suzuki, M., Tanaka, K., Tedersoo, L., Telleria, M.T., Tretter, E., Untereiner, W.A., Urbina, H., Vagvolgyi, C., Vialle, A., Vu, T.D., Walther, G., Wang, Q.M., Wang, Y., Weir, B.S., Weiss, M., White, M.M., Xu, J., Yahr, R., Yang, Z.L., Yurkov, A., Zamora, J.C., Zhang, N., Zhuang, W.Y. and Schindel, D. (2012) From the cover: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci, 109, 6241-6246.
Seena, S., Pascoal, C., Marvanová, L. and Cássio, F. (2010) DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Diversity, 44, 77-87.
Shannon, C. (1948) A mathematical theory of communication. AT&T Tech J, 27, 623-656.
Shao, Y., Arias-Cordero, E., Guo, H., Bartram, S. and Boland, W. (2014) In vivo pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE, 9, e85948.
Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. and Ishikawa, H. (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81-86.
Shil, R.K., Mojumder, S., Sadida, F.F., Uddin, M. and Sikdar, D. (2014) Isolation and identification of cellulolytic bacteria from the gut of three phytophagus insect species. Brazilian Archives of Biology and Technology, 57, 927-932.
Simon, C. and Daniel, R. (2011) Metagenomic analyses: past and future trends. Applied and Environmental Microbiology, 77, 1153-1161.
Stockinger, H., Krüger, M. and Schüßler, A. (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist, 187, 461-474.
Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J. and Leulier, F. (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-Dependent nutrient sensing. Cell Metabolism, 14, 403-414.
Tang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E.A., Andersen, G., Westermann, M., Heckel, D.G. and Boland, W. (2012) Complexity and variability of gut commensal microbiota in polyphagous Lepidopteran larvae. PLoS ONE, 7, e36978.
Thakur, A., Dhammi, P., Saini, H.S. and Kaur, S. (2015) Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria. Journal of Invertebrate Pathology, 127, 38-46.
Tringe, S.G., von Mering, C., Kobayashi, A., Salamov, A.A., Chen, K., Chang, H.W., Podar, M., Short, J.M., Mathur, E.J., Detter, J.C., Bork, P., Hugenholtz, P. and Rubin, E.M. (2005) Comparative metagenomics of microbial communities. Science, 308, 554-557.
van der Hoeven, R., Betrabet, G. and Forst, S. (2008) Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. FEMS Microbiology Letters, 286, 249-256.
Velasco, P., Soengas, P., Vilar, M., Cartea, M.E. and del Rio, M. (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. Journal of the American Society for Horticultural Science, 133, 551-558.
Vilanova, C., Marco, G., Domínguez-Escribà, L., Genovés, S., Sentandreu, V., Bataller, E., Ramón, D. and Porcar, M. (2012) Bacteria from acidic to strongly alkaline insect midguts: Potential sources of extreme cellulolytic enzymes. Biomass and Bioenergy, 45, 288-294.
Visôtto, L.E., Oliveira, M.G.A., Guedes, R.N.C., Ribon, A.O.B. and Good-God, P.I.V. (2009) Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. Journal of Insect Physiology, 55, 185-191.
Wernegreen, J.J. (2002) Genome evolution in bacterial endosymbionts of insects. Nature Reviews Genetics, 3, 850-861.
Wheat, C.W., Vogel, H., Wittstock, U., Braby, M.F., Underwood, D. and Mitchell-Olds, T. (2007) The genetic basis of a plant insect coevolutionary key innovation. Proceedings of the National Academy of Sciences, 104, 20427-20431.
Wilcox, J.L., Dunbar, H.E., Wolfinger, R.D. and Moran, N.A. (2003) Consequences of reductive evolution for gene expression in an obligate endosymbiont. Molecular Microbiology, 48, 1491-1500.
Wittstock, U., Agerbirk, N., Stauber, E.J., Olsen, C.E., Hippler, M., Mitchell-Olds, T., Gershenzon, J. and Vogel, H. (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proceedings of the National Academy of Sciences, 101, 4859-4864.
Wittstock, U. and Halkier, B.A. (2002) Glucosinolate research in the Arabidopsis era. Trends in Plant Science, 7, 263-270.
Wittstock, U., Kliebenstein, D., Lambrix, V., Reichelt, M. and Gershenzon, J. (2003) Integrative phytochemistry: from ethnobotany to molecular ecology. Recent Advances in Phytochemistry (Vol. 37). Elsevier.
Wong, C.N.A., Ng, P. and Douglas, A.E. (2011) Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environmental Microbiology, 13, 1889-1900.
Xia, X., Zheng, D., Zhong, H., Qin, B., Gurr, G.M., Vasseur, L., Lin, H., Bai, J., He, W. and You, M. (2013) DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE, 8, e68852.
Yu, S. (1992) Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 85, 675-682.
Yuan, G., Wang, X., Guo, R. and Wang, Q. (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121, 1014-1019.
Yuen, G.J. and Ausubel, F.M. (2014) Enterococcus infection biology: Lessons from invertebrate host models. Journal of Microbiology, 52, 200-210.
Yun, J.H., Roh, S.W., Whon, T.W., Jung, M.J., Kim, M.S., Park, D.S., Yoon, C., Nam, Y.D., Kim, Y.J., Choi, J.H., Kim, J.Y., Shin, N.R., Kim, S.H., Lee, W.J. and Bae, J.W. (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80, 5254-5264.

徐堉峰。(2002) 台灣蝶圖鑑:第二卷。
張煥英、李兆彬、陳昇寬、林明瑩、與宋一鑫。(2008) 十字花科作物重要害蟲之發生與防治。台南區農業專訊 66 期。
陳文雄與張煥英。(2009) 斜紋夜蛾。收錄於植物保護圖鑑系列,19,36-39。
費雯綺與王喻其。(2007) 植物保護手冊─蔬菜篇。
楊秀珠。(2011) 十字花科蔬菜病蟲害之發生與管理。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-05-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-05-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw