進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2704201110113700
論文名稱(中文) 載具式掃描熱探針之設計與製造
論文名稱(英文) The design and fabrication of a novel vehicle probe for scanning thermal microscopy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 廖芳儀
研究生(英文) Fang-Yi Liao
學號 n56981159
學位類別 碩士
語文別 中文
論文頁數 136頁
口試委員 指導教授-劉浩志
口試委員-許文東
口試委員-呂正傑
中文關鍵字 熱探針  微加熱器  懸臂樑探針  微機電製程 
英文關鍵字 Scanning thermal probe  micro-heater  cantilever probe  MEMS 
學科別分類
中文摘要 本實驗目的在於設計及開發新型掃描熱探針,其中針對加熱型探針的結構(懸臂樑及其上之加熱器),提出新款設計─載具式探針(vehicle probe)。此一設計是將懸臂樑和微型加熱器合併,同時附加另外一項功能─固定特殊材料針頭基座(Base)之功能。
探針開發目的之一是利用電阻式熱絲發熱原理,用以加熱試樣表面,可用於試樣表面加工。另一方面,藉由熱的傳導效應,可使高溫試樣與微懸臂樑進行熱平衡,同時透過金屬熱絲對於溫度變化造成之電阻率的變化,以達到溫度量測的目的,亦可應用以外加熱源加熱試樣之測試,在量測溫度的同時,觀察其機械性質的變化。
本實驗運用有限元素法進行機械性質(彈性係數)、熱絲發熱(最高溫度、溫度加熱區間)及溫度量測(溫度變化之敏感性)之相關模擬,用以調整懸臂量尺寸及熱絲設計,並考慮製程中的種種限制,進行最佳化分析,以製造出一套具有加熱功能並適用於不同針頭材料之懸臂樑。
目前常使用的微加熱器材料多為製程較易控制之離子佈殖矽,或是不易氧化且兼具製程穩定的鉑。由於在此實驗中,欲加入固定探針針頭之功能,因此必須擁有良好之機械性質,在較常用的離子佈殖矽或是金屬鉑作為熱絲時,無法提供足夠之機械強度。機械性質良好與否包含了其厚度、拉伸強度、伸長率等。因此,本實驗採用三種不同製程(無電鍍、熱蒸鍍、化學氣相沉積)製作採用三種不同熱絲材料(鎳磷合金、鋁、鎢)的加熱熱絲。
在模擬探針懸臂樑尺寸最佳化的同時,同時輔有此三種材質的性質比較,如:後續製程溫度、氧化與否、化學耐蝕性等,以確保加熱器之製程與懸臂樑製程相容,並歸納出不同金屬之製程限制,提出其改善方式,期望能使加熱器的材料選擇更為彈性。如此一來,便能達到在不同種類的量測條件下,選擇不同材料的特性,得到更準確之量測效果。
而針對此一載具式探針設計之另一個功能─利用犧牲層之原理創造夾取針頭的構造,用以選擇不同材料所製作之含有基座的針頭。本實驗特別採用單晶鑽石針頭,由此避免因為熱傳導造成的延遲所產生之雜訊,亦能使針頭溫度增加,加上鑽石之高耐磨耗性,可同時提升其空間解析度及熱圖形解析度。
英文摘要 The goal of this study is to design and develop novel probes for scanning thermal microscopy, especially for the nano-TA type of probes that consist of a cantilever, a probe tip, and a micro-heater. We proposed and developed a “vehicle probe”, which has the function to affix the separate probe tip via a foldable micro-heater. With the special design of we provide, there are two kinds of vehicle design including “heating type probe” and the “measurement type probe”.
The dimension and the shape of the cantilever decide the natural resonant frequency, spring constant, and the quantity of heat dissipation. The micro-heater design affects the ability of affixing the tip, the heating efficiency, maxima temperature, and the manufacturability. All these factors are considered through ANSYS finite element analysis (FEA) and the IntelliSuite process simulation analysis, the simulation results provided guidelines for device and processing design.
The materials suitable for micro-heater shall be stable in electrical properties and compatible for manufacturing processes, examples are ion-implanted silicon and platinum. For the purpose of grabbing or clamping the tip, the thickness of the micro-heater needs to be increased to provide sufficient mechanical strength. Hence, we evaluated four different materials for the micro-heater: they are nickel by electroless plating, aluminum by thermal evaporation, tungsten by CVD, and implanted silicon. The fabricated thickness and the resistivity of each micro-heater were measured and evaluated.
Based on this approach, material selection becomes more flexible for different SPM needs. We also considered micro-heater fabrication methods for other processing restrictions (e.g., the post-process temperature, the post-process chemical endurance, and the oxidation issues) to make sure the compatibility of the micro-heater fabrication processes with the overall cantilever fabrication processes.
After all of the simulation and the processes result are evaluated, since “vehicle probe” applies to a variety of tips (materials, sharpness, dimensions etc.), we selected a specialized single crystal bulk diamond tip instead of a regular silicon tip to increase the thermal conductivity and to improve the resolution of the thermal images.
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 IX
圖目錄 XII
第一章 緒論 1
1.1 前言及研究動機 1
1.2 文獻回顧 3
1.3 研究方法與架構 7
第二章 理論基礎 9
2.1 微機電簡介 9
2.2 載具式探針結構設計原理 13
2.3 熱傳導理論 15
2.4 電阻理論 16
2.5 溫度量測原理 17
2.6 有限元素法 18
2.7 鍍膜理論 25
第三章 探針及微加熱器之設計 31
3.1 探針之設計架構 31
3.2 微加熱器整合探針 42
第四章 探針及微加熱器之製程 61
4.1 製程目的 61
4.2 儀器介紹、藥品介紹 61
4.3 製作流程介紹 63
4.4 懸臂樑探針之製作流程 83
4.5 整合微加熱器之探針之製作流程 86
第五章 結果與討論 95
5.1 尺寸最佳化之模擬 95
5.2 製程討論 98
5.3 金屬鍍層之量測 115
5.4 懸臂樑探針 124
第六章 結論與未來展望 127
6.1 結論 127
6.2 未來展望 130
參考文獻 131
參考文獻 [1] G. Binnig, et al., "Atomic Force Microscope," Physical Review Letters, vol. 56, p. 930, 1986.
[2] F. Mailly, et al., "Anemometer with hot platinum thin film," Sensors and Actuators A: Physical, vol. 94, pp. 32-38, 2001.
[3] R. Grover, "Characterizing thermal and chemical properties of materials at the nanoscale using scanning probe microscopy," Dissertation Abstracts International, vol. 67-10, Section: B, p. 5822.; 120 p., 2006.
[4] F. A. Guo, et al., "An application of scanning thermal microscopy: Analysis of the thermal properties of plasma-sprayed yttria-stabilized zirconia thermal barrier coating," Journal of the European Ceramic Society, vol. 25, pp. 1159-1166, 2005.
[5] Z. Xie, et al., "An application of scanning thermal microscopy: mapping near field light-emission of a QW laser diode in operation," Materials Science and Engineering A, vol. 292, pp. 179-182, 2000.
[6] G. B. M. Fiege, et al., "Failure analysis of integrated devices by scanning thermal microscopy (SThM)," Microelectronics Reliability, vol. 38, pp. 957-961.
[7] L. Jungchul and W. P. King, "Improved All-Silicon Microcantilever Heaters With Integrated Piezoresistive Sensing," Microelectromechanical Systems, Journal of, vol. 17, pp. 432-445, 2008.
[8] L. Jungchul and W. P. King, "Array of microcantilever heaters with integrated piezoresistors," in Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, 2007, pp. 135-140.
[9] K. S. Pitzer, "The Heat Capacity of Diamond from 70 to 300K," Journal of chemical physics, vol. 6, 1938
[10] M. A. W. Ruxandra M. Costescu, and David G. Cahill, "Thermal conductance of epitaxial interfaces," Physical review B, vol. 67, 2003.
[11] R. J. Stevens, et al., "Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique," Journal of Heat Transfer, vol. 127, pp. 315-322, 2005.
[12] D. G. Cahill, "Analysis of heat flow in layered structures for time-domain thermoreflectance," Review of scientific instruments, vol. 75, 2004.
[13] M. N. a. H. K. Wickramasinghe., "Scanning probe microscopy of thermal conductivity and subsurface properties," Applied Physics Letters, vol. 61, p. 168, 1992.
[14] G. Binnig, et al., "Surface Studies by Scanning Tunneling Microscopy," Physical Review Letters, vol. 49, p. 57, 1982.
[15] P. J. M. a. P. E. W. Russell J. Pylkki, " Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy," Japanese Journal of Applied Physics, vol. 33, pp. 3785-3790, 1994.
[16] A. Majumdar, et al., "Thermal imaging using the atomic force microscope," Applied Physics Letters, vol. 62, pp. 2501-2503, 1993.
[17] A. Majumdar, "SCANNING THERMAL MICROSCOPY," Annual Review of Materials Science, vol. 29, pp. 505-585, August 1999 1999.
[18] Y. Yamamoto, et al., "The measurement of thermal properties of diamond," Diamond and Related Materials, vol. 6, pp. 1057-1061, 1997.
[19] P. K. Bachmann, et al., "Thermal properties of C/H-, C/H/O-, C/H/N- and C/H/X-grown polycrystalline CVD diamond," Diamond and Related Materials, vol. 4, pp. 820-826, 1995.
[20] M. Shamsa, et al., "Thermal conductivity of diamond-like carbon films," Applied Physics Letters, vol. 89, pp. 161921-3, 2006.
[21] C.-L. Dai, "A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique," Sensors and Actuators B: Chemical, vol. 122, pp. 375-380, 2007.
[22] 張尚任, "新型微探針之設計製作與測試及其整合微加熱器在奈米加工之應用," 民93.
[23] H. J. Mamin and D. Rugar, "Thermomechanical writing with an atomic force microscope tip," Applied Physics Letters, vol. 61, pp. 1003-1005, 1992.
[24] R. P. Ried, et al., "6-MHz 2-N/m piezoresistive atomic-force microscope cantilevers with INCISIVE tips," Microelectromechanical Systems, Journal of, vol. 6, pp. 294-302, 1997.
[25] B. W. C. T. D. S. Y. S. J. K. E. G. T. W. K. H. J. M. B. D. Terris, "Low stiffness cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage," Journal of Microelectromechanical Systems. , vol. 7, pp. 69-78 1998.
[26] A. B. a. G. E. Riddell, "Nickel and Chrome plating," Proc. Am. Electropl. Soc, vol. 33, pp. 4-12, 1946.
[27] K. Krishnan, et al., "An overall aspect of electroless Ni-P depositions—A review article," Metallurgical and Materials Transactions A, vol. 37, pp. 1917-1926, 2006.
[28] R. C. A. a. V. Agarwala, "Electroless alloy/composite coatings: A review," S¯adhan¯a vol. 28, 2003.
[29] R. M. Lukes, "The mechanism for the autocatalytic reduction of nickel by hypophosphite ion," Plating, vol. 51, 1964.
[30] M. V. Sullivan and J. H. Eigler, "Electroless Nickel Plating for Making Ohmic Contacts to Silicon," Journal of The Electrochemical Society, vol. 104, pp. 226-230, 1957.
[31] S. J. Silverman and D. R. Benn, "Junction Delineation in Silicon by Gold Chemiplating," Journal of The Electrochemical Society, vol. 105, pp. 170-172, 1958.
[32] H. Iwasa, et al., "Electroless Nickel Plating on Silicon," Journal of The Electrochemical Society, vol. 115, pp. 485-488, 1968.
[33] J. Dearden, "Electroless plating─its applications in resistor technology," Electrocomponent Science and Technology, vol. 3, pp. 103-111, 1976.
[34] S. Yamada, et al., "Electroless Ni-P resistors for fusing roll," in Electronic Manufacturing Technology Symposium, 1989, Proceedings. Japan IEMT Symposium, Sixth IEEE/CHMT International, 1989, pp. 160-163.
[35] 伍秀菁, 汪若文, 林美吟, "微機電系統技術與應用," 行政院國家科學委員會精密儀器發展中心, 民93.
[36] 陳柏穎, "矽晶圓非等向性濕式蝕刻特性研究," 民92.
[37] M. Gad-el-Hak, "The MEMES Handbook," CRC PRESS, Boca Raton London New York Washington, D.C., 2002.
[38] 何建龍, 蕭志誠,余志成, "高深寬比化學濕蝕刻凸形角落補償尺寸之探討," 機械工程研討會論文集, 1990.
[39] X.-P. Wu and W. H. Ko, "Compensating corner undercutting in anisotropic etching of (100) silicon," Sensors and Actuators, vol. 18, pp. 207-215, 1989.
[40] B. Puers and W. Sansen, "Compensation structures for convex corner micromachining in silicon," Sensors and Actuators A: Physical, vol. 23, pp. 1036-1041, 1990.
[41] G. K. Mayer, et al., "Fabrication of Non-Underetched Convex Corners in Anisotropic Etching of (100)-Silicon in Aqueous KOH with Respect to Novel Micromechanic Elements," Journal of The Electrochemical Society, vol. 137, pp. 3947-3951, 1990.
[42] M. Bao, et al., "Etching front control of <110 > strips for corner compensation," Sensors and Actuators A: Physical, vol. 37-38, pp. 727-732.
[43] W. Lang, "Silicon microstructuring technology," Materials Science and Engineering: R: Reports, vol. 17, pp. 1-55, 1996.
[44] E. Peeters, "Process Development for 3D Silicon Microstructures with Applications to Mechanical Sensor Desigh," Ph.D. Thesis, K.U. Leuven, Faculty of Applied Sciences, 1994.
[45] A. S. Vedat S. Arpaci, Shu-Hsin Kao, "Introduction to Heat Transfer " Prentice Hall., 1999.
[46] S. J, "Physical Electronics," pp. 48-49, 1972.
[47] J. Bird, "Electrical and electronic principles and technology," Newnes, pp. 22-24, 2006.
[48] J. Charles E. Knight, "The finite element method in mechanical design " PWS-KENT., 1993.
[49] 陳新郁, 林政仁, "有限元素分析 ─ 理論與應用 ANSYS," 高立圖書有限公司, 2006初版四刷.
[50] 許京荊, "ANSYS 12.0軟體培訓-熱分析," 上海大學機電學院安全斷裂分析研究室 ansys軟件華東區培訓中心, 2010.
[51] A. Malecki and A. Micek-Ilnicka, "Electroless nickel plating from acid bath," Surface and Coatings Technology, vol. 123, pp. 72-77, 2000.
[52] 吳石乙, "以化學法製備電致色變氧化鎳薄膜之研究," 逢甲大學 化學工程學系博士班博士論文, 民95.
[53] A. W. Goldenstein, et al., "Structure of Chemically Deposited Nickel," Journal of The Electrochemical Society, vol. 104, pp. 104-110, 1957.
[54] 湯淵富, "熱蒸鍍製程," 奈米元件台南廠.
[55] N. G. Semaltianos, "Thermally evaporated aluminium thin films," Applied Surface Science, vol. 183, pp. 223-229, 2001.
[56] K. J. Kuijlaars, et al., "A detailed model for low-pressure CVD of tungsten," Thin Solid Films, vol. 270, pp. 456-461, 1995.
[57] P. J. Ireland, "High aspect ratio contacts: A review of the current tungsten plug process," Thin Solid Films, vol. 304, pp. 1-12, 1997.
[58] 黃英碩, "掃描探針顯微術的原理及應用," 科儀新知, vol. 26, pp. 7-17, 2005.
[59] http://www.grantadesign.com/education/sciencenote.htm, "Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio."
[60] P. D. Desai, et al., "Electrical Resistivity of Selected Elements," Journal of Physical and Chemical Reference Data, vol. 13, pp. 1069-1096, 1984.
[61] P. D. Desai, et al., "Electrical Resistivity of Aluminum and Manganese," Journal of Physical and Chemical Reference Data, vol. 13, pp. 1131-1172, 1984.
[62] P. Chahal, et al., "Electroless Ni-P/Ni-W-P thin-film resistors for MCM-L based technologies," in Electronic Components & Technology Conference, 1998. 48th IEEE, 1998, pp. 232-239.
[63] D. A. P. W. Kern, "Cleaning solutions based on hydrogen peroxide in silicon semiconductor technology," RCA Rev, vol. 31, pp. 187-206 1970.
[64] 張和裕, "半導體晶圓廠的清潔劑," 三聯科技股份有限公司.
[65] 莊達人, "VLSI製造技術," 高立圖書有限公司, pp. 269-274, 民90.
[66] H. Morkoç, "Comprehensive characterization of hydride VPE grown GaN layers and templates," Materials Science and Engineering: R: Reports, vol. 33, pp. 135-207, 2001.
[67] T.-K. Tsai and C.-G. Chao, "The growth morphology and crystallinity of electroless NiP deposition on silicon," Applied Surface Science, vol. 233, pp. 180-190, 2004.
[68] W. L. Liu, et al., "Temperature and pH dependence of the electroless Ni-P deposition on silicon," Thin Solid Films, vol. 510, pp. 102-106, 2006.
[69] T. N. Khoperia, "Investigation of the substrate activation mechanism and electroless Ni-P coating ductility and adhesion," Microelectronic Engineering, vol. 69, pp. 391-398, 2003.
[70] P. Sampath Kumar and P. Kesavan Nair, "Studies on crystallization of electroless Ni---P deposits," Journal of Materials Processing Technology, vol. 56, pp. 511-520, 1996.
[71] K. G. Keong, et al., "Crystallization and phase transformation behaviour of electroless nickel-phosphorus deposits with low and medium phosphorus contents under continuous heating," Journal of Materials Science, vol. 37, pp. 4445-4450, 2002.
[72] W. H. Lee, et al., "Exploiting optical properties of P3HT:PCBM films for organic solar cells with semitransparent anode," Thin Solid Films, vol. 518, pp. 7450-7454, 2010.
[73] Twisp, "http://en.wikipedia.org/wiki/File:Lift-off_(microtechnology)_process.svg."
[74] I. Zubel and M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 93, pp. 138-147, 2001.
[75] I. Zubel and M. Kramkowska, "Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions," Sensors and Actuators A: Physical, vol. 115, pp. 549-556, 2004.
[76] I. Zubel, "The influence of atomic configuration of (h k l) planes on adsorption processes associated with anisotropic etching of silicon," Sensors and Actuators A: Physical, vol. 94, pp. 76-86, 2001.
[77] 黃鐘加, 余志成, "RIE蝕刻矽與氮化矽之參數分析," 南區微機電中心機台操作參數設定專題成果報告, 民92.
[78] R. E. Nicholas Doe, "Optical Proximity Effects in Sub-micron Photomask CD Metrology," Proceedings of SPIE vol. 3996, 2000.
[79] G. Arthur and B. Martin, "A novel method of optical proximity correction using anti-reflective layers and individual photoresist characteristics," Microelectronic Engineering, vol. 35, pp. 185-188, 1997.
[80] Y. M. Li, et al., "Intelligent optical proximity correction using genetic algorithm with model- and rule-based approaches," Computational Materials Science, vol. 45, pp. 65-76, Mar 2009.
[81] H. L. Chen, et al., "Low alkaline contamination bottom antireflective coatings for both 193- and 157-nm lithography applications," Microelectronic Engineering, vol. 67-68, pp. 312-318, 2003.
[82] M. M. Morshed and S. M. Daniels, "Effect of Positive Photoresist on Silicon Etching by Reactive Ion Etching Process," Plasma Science, IEEE Transactions on, vol. 38, pp. 1512-1516, 2010.
[83] Y. Seung Hwan, et al., "Electroless nickel films: properties and fabricated cavity structure," Microelectromechanical Systems, Journal of, vol. 11, pp. 293-301, 2002.
[84] C. A. Domenicali and F. A. Otter, "Thermoelectric Power and Electrical Resistivity of Dilute Alloys of Silicon in Copper, Nickel, and Iron," Journal of Applied Physics, vol. 26, pp. 377-380, 1955.
[85] S. a. Dismukes, "Synthetic Diamond - Emerging CVD Science and Technology," Wiley, NY, 1994.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw