進階搜尋


下載電子全文  
系統識別號 U0026-2701202115564100
論文名稱(中文) 中紅外光纖式微量甲烷感測器之研究
論文名稱(英文) Fiber-Optic Based Trace Methane Sensor using Mid-Infrared Light
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 109
學期 1
出版年 110
研究生(中文) 黃世樺
研究生(英文) Shin-Hua Huang
學號 L78041127
學位類別 博士
語文別 英文
論文頁數 81頁
口試委員 指導教授-崔祥辰
口試委員-魏明達
口試委員-曾盛豪
口試委員-江家慶
口試委員-溫博浚
中文關鍵字 光纖感測器  中紅外光  微量氣體檢測  發光二極體 
英文關鍵字 Fiber sensor  Mid infrared  Trace gas detection  Methane  LED 
學科別分類
中文摘要 甲烷在現代生活中是一種被廣泛使用的溫室氣體,故如何有效地監測甲烷濃度一直以來都受到重視。本研究提出並討論三種使用中紅外線(λ= 3.3 μm)發光二極體的甲烷氣體感測系統的光學方案。
作為同類型研究的首例,本研究採用直接吸收法,其系統基本架構包含一個光源、一個中紅外線發光二極體、一個紅外線光感測器及一個具備適當氣體混合器系統的20 mm氣體槽。其輸出訊號可藉由訊號放大器或鎖相技術放大。使用訊號放大器時,感測極限估計為49 ppm,使用鎖相技術時,偵測極限估計為2.3 ppm。然因中紅外線光非人類肉眼能見,需透過熱顯像儀始能看到,致使光學對準是非常費時,是故在第二種感測系統的光學方案中,本研究改以微結構紅外線多模光纖代替氣體槽,並使用高功率Q開關雷射加工光纖表面,使光與甲烷分子此微加工光纖表面上產生交互作用,偵測極限估計為6.1 ppm,動態範圍估計為26 dB,比直接吸收還精確許多。
綜上研究經驗,本研究最終提出在中空光纖中使用中紅外線發光二極體的微量甲烷氣體感測系統的第三種光學方案。當來自中紅外線發光二極體的光聚焦在中空光纖上,將光與甲烷氣體之間的交互作用限制在直徑0.5 mm的光纖纖核內,並以內置之1m中空光纖增強光程,實現最佳的光與氣體的交互作用。透過採用直接吸收光譜技術,甲烷氣體濃度的感測極限擴展到低至17 ppb,動態範圍估計為42 dB。中紅外線發光二極體的400 nm頻寬可以涵蓋3.3 μm附近的所有強吸收線。此方案為應用於遠程和惡劣環境之低成本手持式甲烷檢測器設計,提供了一個可實現的工程願景。
英文摘要 Methane is a major greenhouse gas being widely used in modern daily life. The need to effectively monitor the methane concentration has always been emphasized.
In this study, we present and discuss three methane gas detection systems using a mid-infrared (MIR) (λ=3.3 µm) light emitting diode (LED). As a first of its kind, the direct absorption method was employed. It included a light source, an MIR LED, an infrared photodetector, and a 20-mm gas cell with a proper gas mixer system. The output signal could be amplified using a signal amplifier or a lock-in technique. The detection limit was estimated as 49 ppm using a signal amplifier and 2.3 ppm using a lock-in technique. MIR light is invisible to the naked eye but can be seen with a thermal camera. The optical alignment is time-consuming. A microstructured IR multimode fiber was adopted instead of a gas cell. The fiber surface was machined by a high-power Q-switched laser, and the interaction of light and methane molecules occurred on this micromachined fiber surface. The detection limit was estimated as 6.1 ppm. The dynamic range was estimated as 26 dB.
In addition, the study presents here an optical scheme for a trace methane gas detection system using mid-infrared (MIR) light emitting diode (LED) (λ=3.3 µm) in a hollow-core fiber (HCF). When light from the MIR LED was focused on the HCF, the latter confines the interaction of light and methane gas within a fiber core of 0.5 mm diameter. The 1-m-long HCF provided enhanced optical path, and optimum light-gas interaction. By employing direct absorption spectroscopy, the detection limit of methane gas concentration was extended to as low as 17 ppb, and the dynamic range was estimated as 42 dB. The 400-nm bandwidth of a MIR LED can cover all strong absorption lines in the vicinity of 3.3 µm. This scheme provides an engineering perspective to realize a low-cost, hand-held methane detector for remote and harsh environments.
論文目次 摘要 I
Abstract II
Acknowledgement III
Table of Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introductions 1
1.1 Research Backgrounds 1
1.2 Infrared spectroscopy 3
1.3 Research Motivations 7
1.4 Overview of this Thesis 8
Chapter 2 Methane Detection using Direct Absorption Method 10
2.1 Introductions 10
2.2 The Beer-Lambert law 13
2.3 The Database for molecular spectroscopy 14
2.3-1 HITRAN molecular spectroscopic database 14
2.3-2 PNNL molecular spectroscopic database 16
2.4 Experimental Scheme for Direct Absorption 17
2.5 Mid-Infrared (MIR) Light-Emitting Diode 19
2.5-1 HgCdTe (MCT) Photo detector 22
2.6 Methane Detection using Direct Absorption Method 25
2.7 The summary of Chapter 2 32
Chapter 3 Methane Detection Using Fiber-Optic Absorption Method 34
3.1 Introductions 34
3.2 The Design of Micro-Structured Fiber 35
3.3 The Experimental Scheme for Fiber-Optic Absorption Sensor 36
3.4 The summary of Chapter 3 39
Chapter 4 Trace Methane Sensor using Mid-Infrared Light Emitting Diode in Hollow-Core Fiber 41
4.1 Introductions 41
4.2 The Experimental Scheme for Trace Methane Sensor in Hollow-Core Fiber 44
4.2-1 the Hollow-Core Fiber in mid-infrared region 46
4.3 Experimental Data and Analysis 49
4.4 The Summary of Chapter 4 54
Chapter 5 Visual-Assisted Laser Microwelding of Carbon Microfiber on Metal Plates 56
5.1 Introductions 56
5.2 Infrared Thermal Imaging and Laser Melting 58
5.3 The Optical Setup and Design 61
5.3-1 The Optical Setup and Design 63
5.3-2 A Feedback Control of Laser Power During Laser Melting Process 65
5.4 Experiment Results and Discussions 67
5.5 The Summary of Chapter 5 70
Chapter 6 Conclusions and Prospects 72
6.1 Conclusions 72
6.2 Future works 73
References 75
參考文獻 [1] N. Ward, Ø. Larsen, J. Sakwa, L. Bruseth, H. Khouri, A. S. Durkin, G. Dimitrov, L. Jiang, D. Scanlan, K. H. Kang, M. Lewis, K. E. Nelson, B. Methé, M. Wu, J. F. Heidelberg, I. T. Paulsen, D. Fouts, J. Ravel, H. Tettelin, Q. Ren, T. Read, R. T. DeBoy, R. Seshadri, S. L. Salzberg, H. B. Jensen, N. K. Birkeland, W. C. Nelson, R. J. Dodson, S. H. Grindhaug, I. Holt, I. Eidhammer, I. Jonasen, S. Vanaken, T. Utterback, T. V. Feldblyum, C. M. Fraser, J. R. Lillehaug, and J. A. Eisen, "Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath)," PLOS Biology 2, e303 (2004).
[2] S. Oberthür and O. S. Stokke, Managing institutional complexity : regime interplay and global environmental change, Institutional dimensions of global environmental change (MIT Press, Cambridge, Mass., 2011), pp. xvi, 353 p.
[3] T. Stocker, Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change (Cambridge University Press, New York, 2014), pp. xi, 1535 pages.
[4] F. Tittel, R. Curl, L. Dong, J. Doty, A. Kosterev, R. Lewicki, D. Thomazy, and G. Wysocki, "Recent Advances in Infrared Semiconductor Laser based Chemical Sensing Technologies, 2011", pp. 165-173.
[5] C. D. Ruppel and J. D. Kessler, "The interaction of climate change and methane hydrates," Reviews of Geophysics 55, 126-168 (2017).
[6] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J. M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M. A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J. M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, "The HITRAN2016 molecular spectroscopic database," Journal of Quantitative Spectroscopy and Radiative Transfer 203, 3-69 (2017).
[7] R. W. Howarth, R. Santoro, and A. Ingraffea, "Methane and the greenhouse-gas footprint of natural gas from shale formations," Climatic Change 106, 679-690 (2011).
[8] R. W. Howarth, "A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas," Energy Sci Eng 2, 47-60 (2014).
[9] P. Balcombe, K. Anderson, J. Speirs, N. Brandon, and A. Hawkes, "The Natural Gas Supply Chain: The Importance of Methane and Carbon Dioxide Emissions," ACS Sustainable Chemistry & Engineering 5, 3-20 (2017).
[10] A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, "Application of quantum cascade lasers to trace gas analysis," Applied Physics B 90, 165-176 (2008).
[11] N. Lang, U. Macherius, M. Wiese, H. Zimmermann, J. Röpcke, and J. H. van Helden, "Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy," Opt Express 24, A536-A543 (2016).
[12] S. Fanchenko, A. Baranov, A. Savkin, and V. Sleptsov, "LED-based NDIR natural gas analyzer," Iop Conf Ser-Mat Sci 108 (2016).
[13] W. Jin, G. Stewart, B. Culshaw, S. Murray, and D. Pinchbeck, "Absorption Measurement of Methane Gas with a Broad-Band Light-Source and Interferometric Signal-Processing," Opt Lett 18, 1364-1366 (1993).
[14] M. Amanzadeh, S. M. Aminossadati, M. S. Kizil, E. Sheridan, and W. P. Bowen, "A microfabricated fibre optic sensor for methane gas measurement in underground coal mines," in 2012 Photonics Global Conference (PGC), 2012, 1-5.
[15] D. F. Swinehart, "The Beer-Lambert Law," Journal of Chemical Education 39, 333 (1962).
[16] L. S. Rothman, R. R. Gamache, A. Barbe, A. Goldman, J. R. Gillis, L. R. Brown, R. A. Toth, J. M. Flaud, and C. Camy-Peyret, "AFGL atmospheric absorption line parameters compilation: 1982 edition," Appl Opt 22, 2247-2256 (1983).
[17] L. S. Rothman, "AFGL atmospheric absorption line parameters compilation: 1980 version," Appl Opt 20, 791-795 (1981).
[18] J. S. Wilzewski, I. E. Gordon, R. V. Kochanov, C. Hill, and L. S. Rothman, "H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2," Journal of Quantitative Spectroscopy and Radiative Transfer 168, 193-206 (2016).
[19] S. W. Sharpe, R. L. Sams, and T. J. Johnson, "The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging," in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings., 2002, 45-48.
[20] A. R. Adams, C. T. Elliott, A. Krier, B. N. Murdin, and A. Krier, "Physics and technology of mid-infrared light emitting diodes," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, 599-619 (2001).
[21] J. Hodgkinson and R. P. Tatam, "Optical gas sensing: a review," Measurement Science and Technology 24, 012004 (2012).
[22] R. J. Ricker, S. R. Provence, D. T. Norton, T. F. BoggessJr., and J. P. Prineas, "Broadband mid-infrared superlattice light-emitting diodes," J Appl Phys 121, 185701 (2017).
[23] D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, "High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60, 3325-3335 (2004).
[24] F. Cao, D. Liu, J. Lin, B. Hu, and D. Liu, "Absorption measurement of methane gas with broadband light source using fiber-optic sensor system," Frontiers of Optoelectronics in China 3, 394-398 (2010).
[25] B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Vanewyk, and A. Mcghee, "Evanescent Wave Methane Detection Using Optical Fibers," Electron Lett 28, 2232-2234 (1992).
[26] S. McCabe and B. D. MacCraith, "Novel mid-infrared LED as a source for optical fibre gas sensing," Electron Lett 29, 1719-1721 (1993).
[27] B. D. MacCraith, V. P. Ruddy, and S. P. McCabe, "Suitability of single-mode fluoride fibers for evanescent-wave sensing," in OE Fiber, (SPIE, 1992), 8.
[28] S. P. McCabe, "An investigation of evanescent wave gas sensing using Zirconium Fluoride optical fibre," (Dublin City University, 1994).
[29] K. Uehara and H. Tai, "Remote detection of methane with a 1.66-μm diode laser," Appl Optics 31, 809-814 (1992).
[30] T. Iseki, "Techniques for Methane Gas Leak Detection Using a Near-Infrared Diode Laser," The Review of Laser Engineering 33, 300-305 (2005).
[31] J. A. Harrington, Infrared fibers and their applications (SPIE Optical Engineering Press, Bellingham, Wash., 2004), pp. xi, 298 p, Spectrochim. Acta A. Mol. Biomol. Spectrosc. 60 (2004) 3325–3335.
[32] J. F. Kelly, R. L. Sams, T. A. Blake, M. Newburn, J. Moran, M. L. Alexander, and H. Kreuzer, "A capillary absorption spectrometer for stable carbon isotope ratio (C-13/C-12) analysis in very small samples," Rev Sci Instrum 83 (2012).
[33] J. F. Kelly, R. L. Sams, T. A. Blake, and J. M. Kriesel, "Further developments of capillary absorption spectrometers using small hollow-waveguide fibers," in SPIE OPTO, (SPIE, 2014), 16.
[34] J. M. Kriesel, C. N. Makarem, M. C. Phillips, J. J. Moran, M. L. Coleman, L. E. Christensen, and J. F. Kelly, "Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell," in SPIE Commercial + Scientific Sensing and Imaging, (SPIE, 2017), 7.
[35] J. M. Kriesel, N. Gat, B. E. Bernacki, R. L. Erikson, B. D. Cannon, T. L. Myers, C. M. Bledt, and J. A. Harrington, "Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy," in SPIE Defense, Security, and Sensing, (SPIE, 2011), 10.
[36] C. M. Bledt, J. A. Harrington, and J. M. Kriesel, "Loss and modal properties of Ag/AgI hollow glass waveguides," Appl Optics 51, 3114-3119 (2012).
[37] P. Patimisco, A. Sampaolo, M. Giglio, J. M. Kriesel, F. K. Tittel, and V. Spagnolo, "Hollow core waveguide as mid-infrared laser modal beam filter," J Appl Phys 118(2015).
[38] P. Patimisco, A. Sampaolo, L. Mihai, M. Giglio, J. Kriesel, D. Sporea, G. Scamarcio, F. K. Tittel, and V. Spagnolo, "Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7-7.6 mu m Spectral Range," Sensors-Basel 16(2016).
[39] L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt Express 15, 11219-11224 (2007).
[40] Y. Qu, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, "Multiline absorption spectroscopy for methane gas detection," Appl Optics 45, 8537-8540 (2006).
[41] K. T. V. Grattan and T. Sun, "Fiber optic sensor technology: an overview," Sensors and Actuators A: Physical 82, 40-61 (2000).
[42] R. Carrow, R. Brown, and W. Van Huss, "Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats," The Anatomical Record 159, 33-39 (1967).
[43] C. M. Bledt, J. A. Harrington, and J. M. Kriesel, "Loss and modal properties of Ag/AgI hollow glass waveguides," Appl Opt 51, 3114-3119 (2012).
[44] V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, "Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation," Opt Lett 37, 4461-4463 (2012).
[45] P. Patimisco, A. Sampaolo, L. Mihai, M. Giglio, J. Kriesel, D. Sporea, G. Scamarcio, F. K. Tittel, and V. Spagnolo, "Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7-7.6 mum Spectral Range," Sensors (Basel) 16(2016).
[46] A. Sampaolo, P. Patimisco, J. M. Kriesel, F. K. Tittel, G. Scamarcio, and V. Spagnolo, "Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 microm," Opt Express 23, 195-204 (2015).
[47] S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, "Gas-phase databases for quantitative infrared spectroscopy," Appl Spectrosc 58, 1452-1461 (2004).
[48] C. S. Brauer, T. J. Johnson, T. A. Blake, S. W. Sharpe, R. L. Sams, and R. G. Tonkyn, "The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates," Advanced Environmental, Chemical, and Biological Sensing Technologies Xi 9106 (2014).
[49] X. Cao, M. Jahazi, J. P. Immarigeon, and W. Wallace, "A review of laser welding techniques for magnesium alloys," J Mater Process Tech 171, 188-204 (2006).
[50] Y. C. Liao and M. H. Yu, "Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet," J Mater Process Tech 190, 102-108 (2007).
[51] T. A. Mai and A. C. Spowage, "Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminium," Mat Sci Eng a-Struct 374, 224-233 (2004).
[52] Y. T. Hsu, Y. R. Wang, S. K. Wu, and C. Chen, "Effect of CO2 laser welding on the shape-memory and corrosion characteristics of TiNi alloys," Metall Mater Trans A 32, 569-576 (2001).
[53] J. P. Bergmann and M. Stambke, "Potential of laser-manufactured polymer-metal hybrid joints," Physcs Proc 39, 84-91 (2012).
[54] C. Wang, K. Takei, T. Takahashi, and A. Javey, "Carbon nanotube electronics - moving forward," Chem Soc Rev 42, 2592-2609 (2013).
[55] M. Schroter, M. Claus, P. Sakalas, M. Haferlach, and D. W. Wang, "Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the-Art Overview," Ieee J Electron Devi 1, 9-20 (2013).
[56] H. Fennander, V. Kyrki, A. Fellman, A. Salminen, and H. Kälviäinen, "Visual measurement and tracking in laser hybrid welding," Machine Vision and Applications 20, 103-118 (2009).
[57] F. Bardin, A. Cobo, J. M. Lopez-Higuera, O. Collin, P. Aubry, T. Dubois, M. Högström, P. Nylen, P. Jonsson, J. D. C. Jones, and D. P. Hand, "Optical techniques for real-time penetration monitoring for laser welding," Appl Optics 44, 3869-3876 (2005).
[58] T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, "A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes," Sensors (Basel, Switzerland) 9, 3376-3385 (2009).
[59] F. Bardin, S. Morgan, S. Williams, R. McBride, A. J. Moore, J. D. C. Jones, and D. P. Hand, "Process control of laser conduction welding by thermal imaging measurement with a color camera," Appl Optics 44, 6841-6848 (2005).
[60] H. Thomann and B. Frisk, "Measurement of heat transfer with an infrared camera," International Journal of Heat and Mass Transfer 11, 819-826 (1968).
[61] V. Bernard, E. Staffa, V. Mornstein, and A. Bourek, "Infrared camera assessment of skin surface temperature – Effect of emissivity," Physica Medica 29, 583-591 (2013).
[62] M. Doubenskaia, M. Pavlov, S. Grigoriev, and I. Smurov, "Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera," Surface and Coatings Technology 220, 244-247 (2013).
[63] W. Devesse, D. De Baere, M. Hinderdael, and P. Guillaume, "High Resolution Temperature Estimation During Laser Cladding of Stainless Steel," Physics Procedia 83, 1253-1260 (2016).
[64] H. Torres, S. Slawik, C. Gachot, B. Prakash, and M. Rodríguez Ripoll, "Microstructural design of self-lubricating laser claddings for use in high temperature sliding applications," Surface and Coatings Technology 337, 24-34 (2018).
[65] Z. Chen, X. Zong, J. Shi, and X. Zhang, "Online Monitoring Based on Temperature Field Features and Prediction Model for Selective Laser Sintering Process," Applied Sciences 8, 2383 (2018).
[66] C. Zhehan, Z. Xiaohua, H. Ketai, Z. Xianhui, and W. Haiyue, "Image Processing Methods Based on Key Temperature Features for State Analysis and Process Monitoring of Selective Laser Melting (SLM)," in Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, (Association for Computing Machinery, Phuket, Thailand, 2018), pp. 110–115.
[67] L. Song and J. Mazumder, "Feedback Control of Melt Pool Temperature During Laser Cladding Process," IEEE Transactions on Control Systems Technology 19, 1349-1356 (2011).
[68] J. Rodriguez-Araujo, J. J. Rodriguez-andina, J. Farina, F. Vidal, J. L. Mato, and M. A. Montealegre, "Industrial Laser Cladding Systems: FPGA-Based Adaptive Control," IEEE Industrial Electronics Magazine 6, 35-46 (2012).
[69] P. Colodrón, J. Fariña, J. J. Rodríguez-Andina, F. Vidal, J. L. Mato, and M. Á. Montealegre, "Performance improvement of a laser cladding system through FPGA-based control," in IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011), 2814-2819.
[70] G. Masinelli, T. Le-Quang, S. Zanoli, K. Wasmer, and S. A. Shevchik, "Adaptive Laser Welding Control: A Reinforcement Learning Approach," IEEE Access 8, 103803-103814 (2020).
[71] W.-W. Liu, Z.-J. Tang, X.-Y. Liu, H.-J. Wang, and H.-C. Zhang, "A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing," Procedia CIRP 61, 235-240 (2017).
[72] Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, M. Li, and H. Zhang, "Review on thermal analysis in laser-based additive manufacturing," Optics & Laser Technology 106, 427-441 (2018).
[73] V. Renken, L. Lübbert, H. Blom, A. von Freyberg, and A. Fischer, "Model assisted closed-loop control strategy for selective laser melting," Procedia CIRP 74, 659-663 (2018).
[74] M. Montazeri, A. R. Nassar, A. J. Dunbar, and P. Rao, "In-process monitoring of porosity in additive manufacturing using optical emission spectroscopy," IISE Transactions 52, 500-515 (2020).
[75] A. Hänsel and M. J. R. Heck, "Opportunities for photonic integrated circuits in optical gas sensors," Journal of Physics: Photonics 2, 012002 (2020).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-02-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw