進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2701201413594400
論文名稱(中文) 以有機化學氣相沉積法成長氧化鋅摻雜鎵之透明導電薄膜其特性及元件應用之研究
論文名稱(英文) Characteristics and device applications of Ga-doped ZnO transparent conductive layers grown by MOCVD
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 1
出版年 103
研究生(中文) 殷振揚
研究生(英文) Chen-Yang Yin
學號 vf6002019
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-洪瑞華
口試委員-武東星
口試委員-郭浩中
中文關鍵字 氧化鋅鎵  有機金屬化學氣相沉積  氮化鎵  發光二極體  透明導電薄膜  歐姆接觸 
英文關鍵字 GZO  MOCVD  GaN  LED  TCL  ohmic-contact 
學科別分類
中文摘要 本研究利用有機金屬化學氣相沉積系統(metal-organic chemical deposition, MOCVD)在藍寶石(sapphire)基板上成長摻鎵氧化鋅(Ga-doped Zinc Oxide, GZO)透明導電薄膜。探討不同的TMGa流量及退火溫度對薄膜結晶特性、光學特性以及導電特性之影響及其相關性。最後利用MOCVD將GZO透明導電薄膜應用於藍光GaN-LED。經由快速熱退火(Rapid Thermal Annealing, RTA)進行退火,使GZO/p-GaN接面達到歐姆接觸,並討論GZO-LED的元件電特性及發光特性。
由研究發現,TMGa流量為10 sccm成長之GZO薄膜,其電阻率可達2.41×10-3 Ω-cm。將GZO薄膜於氮氣環境600 oC下進行退火製程後,其薄膜結晶品質及載子濃度將會有明顯提升。GZO薄膜的電阻率最低可達3.38×10-4 Ω-cm,載子遷移率為6.4 cm2/ V-s載子濃度為2.94×1021 cm-3,於藍光450 nm波長穿透率提升至97%以上,相較於常見的ITO薄膜具有相近的電特性及更高的穿透率。
最後利用MOCVD將GZO透明導電薄膜應用於藍光GaN LED。經由退火製程後發現在GZO/p-GaN接面的部份,有Zn原子擴散進入p-GaN表層,進而促進GZO/p-GaN接面的歐姆特性。GZO-LED元件特性在20 mA電流注入下具有70%的外部光取出效率,在350 mA的電流注入下具有251.5 mW的輸出功率,相較於常見的ITO-LED可以有8.5%的提升。以上結果顯示了經由MOCVD成長GZO薄膜在GaN LED上的應用性及可行性。
英文摘要 In this study, high performance of Ga-doped ZnO (GZO) films have been prepared on sapphire substrates by the metal-organic chemical deposition (MOCVD). We focus on the optimization of the electrical and optical properties of GZO films by varying TMGa flow rate. It was found that the resistivity of as-deposited GZO thin films deposited with TMGa flow rate 10 sccm was 2.41×10-3 Ω-cm. After thermal annealing in 600 oC for 2 min in N2 ambient, the resistivity of GZO could be as low as 3.38×10-4 Ω-cm. It was attributed to the improvement of the GZO crystal quality, leading to an increase in electron concentration. It was also found that the optical transmittance of GZO thin films exhibited a high transparency above 97% at wavelength of 450 nm .
Ga-doped ZnO (GZO) were deposited by MOCVD to be the transparent contact layers(TCL) for GaN blue light-emitting diodes (LEDs). The contact resistance of GZO decreased with the annealing temperature increasing. It was also found that some Zn atom caused from the decomposition process diffused into the p-GaN surface of LED, which generated a stronger tunneling effect at the GZO/p-GaN interface and promoted the formation of ohmic contact. Moreover, contrast to the ITO-LED, a high light extraction efficiency of 77% was achieved in the GZO-LED at injection current of 20 mA. At 350 mA injection current, the output power of 256.51 mW of GZO-LEDs, corresponding to a 21.5% enhancement as compared to ITO-LEDs was obtained; results are promising for the development of GZO using the MOCVD technique for GaN LED applications.
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 序論 1
1-1 背景簡介 1
1-2 研究動機 1
1-3 論文架構 3
第二章 理論基礎 4
2-1 透明導電膜 4
2-1-1 金屬薄膜 5
2-1-2 金屬氧化物半導體膜 5
2-1-3 透明導電膜的製備 6
2-2 氧化鋅材料性質 7
2-2-1 晶體結構 7
2-2-2 常見的缺陷及特性 8
2-2-3 發光性質 11
2-2-4 摻雜性質 12
2-2-5 摻鎵氧化鋅特性 13
2-2-5-1 摻鎵氧化鋅薄膜的導電機制 14
2-2-5-2 氧化鋅鎵薄膜的光學特性 17
第三章 實驗方法 20
3-1 實驗流程 20
3-2 GZO薄膜成長及退火處理 20
3-2-1 樣品清洗 20
3-2-2 GZO成長 21
3-2-3 退火處理 21
3-3 傳統結構之氮化鎵發光二極體製作 22
3-3-1 試片之清洗 22
3-3-2 透明導電薄膜成長 23
3-3-3 平台與透明導電層之製作 24
3-3-4 熱退火處理 24
3-3-5 電極製作 25
3-4 量測儀器原理及設備 26
3-4-1 積分球量測系統 26
3-4-2 原子力顯微鏡(Atomic Force Microscope, AFM)量測系統 26
3-4-3 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM ) 26
3-4-4 X光繞射(X-Ray Diffraction, XRD)量測系統 27
3-4-5 光致螢光光譜儀(Photoluminescence, PL)量測系統 27
3-4-6 光電特性量測系統 28
3-4-7 IR紅外熱像分析系統 28
3-4-8 Alpha-step量測系統 29
3-4-9 霍爾效應(Hall)量測系統 29
第四章 結果與討論 30
4-1 不同摻雜濃度的GZO性質 30
4-1-1 不同摻雜濃度對GZO薄膜元素組成及電性之影響 30
4-1-2 不同摻雜濃度對GZO磊晶膜表面形貌之影響 31
4-1-3 不同摻雜濃度對GZO磊晶膜結晶特性之影響 32
4-1-4 不同摻雜濃度對GZO磊晶膜穿透率之影響 33
4-1-5 不同摻雜濃度對GZO磊晶膜發光特性之影響 34
4-2 不同退火溫度下的GZO性質 36
4-2-1 不同退火溫度對GZO薄膜元素組成之影響 36
4-2-2 不同退火溫度對GZO薄膜表面型態之影響 36
4-2-3 不同退火溫度對GZO薄膜電性之影響 37
4-2-4 不同退火溫度對GZO薄膜穿透率之影響 37
4-2-5 不同退火溫度對GZO薄膜發光特性之影響 38
4-3 GZO與p-GaN歐姆接觸性質 40
4-3-1 p-GaN與GZO薄膜於不同退火溫度下之接觸電阻 40
4-3-2 p-GaN與GZO薄膜經退火後之縱深分析 40
4-4 GZO-LED 元件特性探討並與ITO-LED進行比較 41
4-4-1 GZO薄膜和ITO薄膜經過退火後的穿透率比較 41
4-4-2 GZO-LED及ITO-LED的I-V特性及EL電性分析 42
4-4-3 GZO-LED及ITO-LED的表面溫度及發光強度分佈 43
4-4-4 GZO-LED及ITO-LED的光電轉換效率及量子效率 44
第五章 結論與未來展望 46
5-1 結論 46
5-2 未來展望 47
參考文獻 48
參考文獻 [1] Park, S. M., Ikegami, T., Ebihara, K., & Shin, P. K, “Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition,” applied surface science, 253(3), 1522-1527, 2006.
[2] Izumi, H., Adurodija, F. O., Kaneyoshi, T., Ishihara, T., Yoshioka, H., & Motoyama, M, “Electrical and structural properties of indium tin oxide films prepared by pulsed laser deposition,” Journal of applied physics, 91(3), 1213-1218, 2002.
[3] Kon, M., Song, P. K., Shigesato, Y., Frach, P., Mizukami, A., & Suzuki, K, “Al-doped ZnO films deposited by reactive magnetron sputtering in mid-frequency mode with dual cathodes,” Japanese journal of applied physics,41(2A), 814-819, 2002.
[4] Papadopoulou, E. L., Varda, M., Kouroupis-Agalou, K., Androulidaki, M., Chikoidze, E., Galtier, P., Aperathitis, E, “Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition,” Thin Solid Films, 516(22), 8141-8145, 2008.
[5] Kim, H., Gilmore, C. M., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., Chrisey, D. B, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” Journal of Applied Physics, 86(11), 6451-6461, 1999.
[6] Labeau, M., Rey, P., Deschanvres, J. L., Joubert, J. C., & Delabouglise, G, “Thin films of high-resistivity zinc oxide produced by a modified CVD method,” Thin Solid Films, 213(1), 94-98, 1992.
[7] Mondragón-Suárez, H., Maldonado, A., Olvera, M., Reyes, A., Castanedo-Pérez, R., Torres-Delgado, G., & Asomoza, R, “ZnO: Al thin films obtained by chemical spray: effect of the Al concentration,” Applied surface science, 193(1), 52-59, 2002.
[8] Jeong, S. H., Lee, J. W., Lee, S. B., & Boo, J. H. , ”Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties,” Thin solid films, 435(1), 78-82, 2003.
[9] Hayamizu, S., Tabata, H., Tanaka, H., & Kawai, T, “Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition,” Journal of applied physics, 80(2), 787-791, 1996.
[10] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997), 201–260, 1997.
[11] Pan, C. C., Lee, C. M., Liu, J. W., Chen, G. T., & Chyi, J. I, “Luminescence efficiency of InGaN multiple-quantum-well ultraviolet light-emitting diodes,” Applied physics letters, 84(25), 5249-5251, 2004.
[12] K. C. Shen, W. Y. Lin, D. S. Wuu, S. Y. Huang, K. S. Wen, S. F. Pai, L. W. Wu, and R. H. Horng, “An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask,” IEEE Electron Device Lett, 34(2), 274–276, 2013.
[13] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic Carbon-implanted InGaN–GaN light-emitting diodes,” IEEE Photon. Technol. Lett, 18(19), 2029–2031, 2006.
[14] J. Y. Kim, M. K. Kwon, S. J. Park, S. H. Kim, and K. D. Lee, “Enhancement of light extraction from GaN-based green light-emitting diodes using selective area photonic crystal,” Appl. Phys, Lett, 96(25), 251103, 2010.
[15] H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, and T. Y. Seong, “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers,” Appl. Phys. Lett, 90(16), 161110, 2007.
[16] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys, Lett, 90(26), 263511, 2007.
[17] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett, 17(2), 288–290, 2005.
[18] K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc, 158(10), H988–H993, 2011.
[19] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts,” IEEE Photon. Technol. Lett, 15(5), 646–648, 2003.
[20] J. T. Yan, C. H. Chen, S. F. Yen, and C. T. Lee, “Ultraviolet ZnO nanorod/p-GaN-heterostructured light-emitting diodes,” IEEE Photon. Technol. Lett, 22(3), 146–148, 2010.
[21] T. Y. Park, Y. S. Choi, J. W. Kang, J. H. Jeong, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced,optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett, 96(5), 051124, 2010.
[22] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, “Properties of transparent conductive ZnO:Al films prepared by co-sputtering,” J. Cryst. Growth, 274(3–4), 453–457, 2005.
[23] T. Agne, Z. Guan, X. M. Li, H. Wolf, T. Wichert, H. Natter, and R. Hempelmann, “Doping of the nanocrystalline semiconductor zinc oxide with the donor indium,” Appl. Phys. Lett, 83(6), 1204–1206, 2003.
[24] K. Y. Yen, C. H. Chiu, C. W. Li, C. H. Chou, P. S. Lin, T. P. Chen, T. Y. Lin, and J. R. Gong, “Performance of InGaN/GaN MQW LEDs using Ga-doped ZnO TCLs prepared by ALD,” IEEE Photon. Technol. Lett, 24(23), 2105–2108, 2012).
[25] Kuo, C. H., Yeh, C. L., Chen, P. H., Lai, W. C., Tun, C. J., Sheu, J. K., & Chi, G. C, “Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact layer,” Electrochemical and solid-state letters, 11(9), H269-H271, 2008.
[26] Badeker, K, “Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds,” Ann. Phys.(Leipzig), 22(4), 749-766, 1907.
[27] Mizuhashi, M, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide films.” Thin Solid Films, 70(1), 91-100, 1980.
[28] Chopra, K. L., Major, S., & Pandya, D. K, “Transparent conductors—a status review,” Thin solid films, 102(1), 1-46, 1983.
[29] Hartnagel, H. L., Dawar, A. L., Jain, A. K., & Jagadish, C. Semiconducting Transparent Thin Films. IOP, Bristol, 1995.
[30] Ellmer, K, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties,” Journal of Physics D: Applied Physics, 33(4), R17, 2000.
[31] Singh, A. V., Mehra, R. M., Buthrath, N., Wakahara, A., & Yoshida, A, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” Journal of Applied Physics, 90(11), 5661-5665, 2001.
[32] Ni, J., Yan, H., Wang, A., Yang, Y., Stern, C. L., Metz, A. W., ... & Kannewurf, C. R, “MOCVD-derived highly transparent, conductive zinc-and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” Journal of the American Chemical Society, 127(15), 5613-5624, 2005.
[33] Major, S. A. K. L., Banerjee, A., & Chopra, K. L, “Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis,” Thin Solid Films, 108(3), 333-340, 1983.
[34] Tang, W., & Cameron, D. C, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process,” Thin Solid Films, 238(1), 83-8, 1994.
[35] Fujihara, S., Suzuki, A., & Kimura, T, “Ga-doping effects on electrical and luminescent properties of ZnO:(La, Eu) OF red phosphor thin films,” Journal of applied physics, 94(4), 2411-2416, 2003.
[36] Minami, T, “New n-type transparent conducting oxides,” Mrs Bulletin, 25(8), 38-44, 2000.
[37] Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., ... & Morkoc, H, “A comprehensive review of ZnO materials and devices,” Journal of applied physics, 98(4), 041301, 2005.
[38] Ishibashi, S., Higuchi, Y., Ota, Y., & Nakamura, K. , ”Low resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical property of films,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8(3), 1403-1406, 1990.
[39] Fukano, T., & Motohiro, T, “Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition,” Solar energy materials and solar cells, 82(4), 567-575, 2004.
[40] Kuo, C. H., Yeh, C. L., Chen, P. H., Lai, W. C., Tun, C. J., Sheu, J. K., & Chi, G. C, “Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact layer,” Electrochemical and solid-state letters, 11(9), H269-H271, 2008.
[41] Assuncao, V., Fortunato, E., Marques, A., Aguas, H., Ferreira, I., Costa, M. E. V., & Martins, R, “Influence of the deposition pressure on the properties of transparent and conductive ZnO: Ga thin-film produced by rf sputtering at room temperature,” Thin Solid Films, 427(1), 401-405, 2003.
[42] Sahu, D. R., Lin, S. Y., & Huang, J. L, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Applied surface science, 252(20), 7509-7514, 2006.
[43] Choi, K. H., Kim, J. Y., Lee, Y. S., & Kim, H. J, “ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode,” Thin solid films, 341(1), 152-155, 1999.
[44] 潘漢昌、蕭銘華、蘇健穎、蕭健男,科儀新知,26,46-48,(2004).
[45] J. E. Jaffe and A. C. Hess, “Hartree-Fock study of phase changes in ZnO at high pressure,” Phys. Rev. B, 48, 7903-7909, 1993.
[46] Chu, S., Olmedo, M., Yang, Z., Kong, J., & Liu, J, “Electrically pumped ultraviolet ZnO diode lasers on Si,” Applied Physics Letters, 93(18), 181106-181106, 2008.
[47] Van de Walle, C. G, “Defect analysis and engineering in ZnO,” Physica B: Condensed Matter, 308, 899-903, 2001.
[48] Janotti, A., & Van de Walle, C. G, “New insights into the role of native point defects in ZnO,” Journal of crystal growth, 287(1), 58-65, 2006.
[49] D. C. Look, J. W. Hemsky, J. R. Sizelove, “Residual Native Shallow Donor in ZnO,” Phys. Rev. Lett, 82(12), 2552, 1999.
[50] P. Erharta, and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Appl. Phys. Lett, 88(20), 201918, 2006.
[51] Kasai, P. H, “Electron spin resonance studies of donors and acceptors in ZnO,” Physical review, 130(3), 989, 1963.
[52] D. C. Look, J. W. Hemsky, J. R. Sizelove, “Residual Native Shallow Donor in ZnO,” Phys. Rev. Lett, 82(12), 2552, 1999.
[53] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, ” Evidence for Native-Defect Donors in n-Type ZnO,” Phys. Rev. Lett, 95(22), 225502, 2005.
[54] Lee, E. C., Kim, Y. S., Jin, Y. G., & Chang, K. J, “Compensation mechanism for N acceptors in ZnO,” Physical Review B, 64(8), 085120, 2001.
[55] Wei, X. Q., Man, B. Y., Liu, M., Xue, C. S., Zhuang, H. Z., & Yang, C, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2,” Physica B: Condensed Matter, 388(1), 145-152, 2007.
[56] Kang, S., Shin, K., Prabakar, K., & Lee, C, “Optical and electrical properties of ZnO doped with nitrogen,” physica status solidi (b), 241(12), 2830-2834, 2004.
[57] Zhang, D. H., Xue, Z. Y., & Wang, Q. P, “The mechanisms of blue emission from ZnO films deposited on glass substrate by rf magnetron sputtering,” Journal of Physics D: Applied Physics, 35(21), 2837, 2002.
[58] A. Toumiat, S. Achour, A. Harabil, N. Tabet, M. Boumaour, and M. Maallemi, Nanotechnology. 17, 658, 2006
[59] Nunes, P., Fortunato, E., & Martins, R, “Influence of the post-treatment on the properties of ZnO thin films,” Thin Solid Films, 383(1), 277-280, 2001.
[60] Song, P. K., Watanabe, M., Kon, M., Mitsui, A., & Shigesato, Y, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering,” Thin Solid Films, 411(1), 82-86, 2002.
[61] Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H., & Chua, S. J, “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition,” Journal of applied physics, 98(1), 013505-013505, 2005.
[62] Minami, T., Nanto, H., & Takata, S, “Optical properties of aluminum doped zinc oxide thin films prepared by RF magnetron sputtering,” Japanese journal of applied physics, 24(Part 2), L605-L607, 1985.
[63] S. R. Jeon, Y. H. Song, H.J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, "Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Applied Physics Letters, 78(21), 3265-3267, 2001,
[64] P. N. Arne Roos, P. Nostell, D. Ronnow, and A. Roos, "Single-beam integrating sphere spectrophotometer for reflectance andstransmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Review of Scientific Instruments, 70.5, 2481, 1999.
[65] 陳立俊,張立,梁鉅銘,林文台,楊哲人,鄭晃忠,材料電微鏡學,國家實驗研究院儀器科技研究中心,台灣,1990。
[66] 鄧建龍、姚潔宜、張茂男,X-ray Diffraction Utilized in the Semiconductor Industry, Nano Communication, 15(4), 6-9, 2008.
[67] Musat, V., Teixeira, B., Fortunato, E., Monteiro, R. C. C., & Vilarinho, P, “Al-doped ZnO thin films by sol–gel method. Surface and coatings Technology,” 180, 659-662, 2004.
[68] Jiang, X., Jia, C. L., & Szyszka, B, “Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface,” Applied physics letters, 80(17), 3090-3092, 2002.
[69] Park, K. C., Ma, D. Y., & Kim, K. H, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering,” Thin Solid Films,305(1), 201-209, 1997.
[70] Kim, H., Pique, A., Horwitz, J. S., Murata, H., Kafafi, Z. H., Gilmore, C. M., & Chrisey, D. B, “Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices,” Thin Solid Films, 377, 798-802, 2000.
[71] Cho, J., Nah, J., Oh, M. S., Song, J. H., Yoon, K. H., Jung, H. J., & Choi, W. K, “Enhancement of Photoluminescence and Electrical Properties of Ga-Doped ZnO Thin Film Grown on α-Al2O3 (0001) Single-Crystal Substrate by rf Magnetron Sputtering through Rapid Thermal Annealing,” Japanese Journal of Applied Physics, 40, L1040-L1043, 2001.
[72] Posadas, A., J‐B. Yau, and C. H. Ahn, “Epitaxial multiferroic hexagonal manganite thin films grown on ZnO,” physica status solidi (b) 243.9, 2085-2088, 2006.
[73] Yan, X. Q., Zhou, W. Y., Sun, L. F., Gao, Y., Liu, D. F., Wang, J. X. & Xie, S. S, “The influence of hydrogen on the growth of gallium catalyzed silicon oxide nanowires,” Journal of Physics and Chemistry of Solids, 66(5), 701-705, (2005)
[74] Khranovskyy, V., Grossner, U., Nilsen, O., Lazorenko, V., Lashkarev, G. V., Svensson, B. G., & Yakimova, R, “Structural and morphological properties of ZnO: Ga thin films,” Thin Solid Films, 515(2), 472-476, 2006.
[75] T. Y. Park, Y. S. Choi, J. W. Kang, J. H. Jeong, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett, 96(5), 051124, 2010.
[76] J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “P-GaN surface treatments for metal contacts,” Appl. Phys. Lett, 76(4), 415–417, 2000.
[77] C. J. Tun, J. K. Sheu, M. L. Lee, C. C. Hu, C. K. Hsieh, and G. C. Chi, “Effects of thermal annealing on Al-doped ZnO films deposited on p-type Gallium Nitride,” J. Electrochem. Soc. 153(4), G296–G298, 2006.
[78] G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, “Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films,” Thin Solid Films 515(24), 8562–8566, 2007.
[79] Bulashevich, K. A., Evstratov, I. Y., Mymrin, V. F., & Karpov, S. Y, “Current spreading and thermal effects in blue LED dice,” physica status solidi (c), 4(1), 45-48, 2007.
[80] 张维佳, 王天民, 钟立志, 吴小文, & 崔敏, “ITO 导电膜红外发射率理论研究,” 物理学报, 54(9), 4439-4444, 2005.
[81] Ye, J. D., Gu, S. L., Zhu, S. M., Liu, S. M., Zheng, Y. D., Zhang, R., & Shi, Y, “Fermi-level band filling and band-gap renormalization in Ga-doped ZnO,” Applied Physics Letters, 86(19), 192111-192111, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw