進階搜尋


下載電子全文  
系統識別號 U0026-2701201117572300
論文名稱(中文) 前十字韌帶重建手術患者於介入神經肌肉訓練後在肌力與跳躍動作控制方面之療效
論文名稱(英文) The effects on knee strength and hopping strategies for patients with ACLR after neuromuscular training
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 99
學期 1
出版年 100
研究生(中文) 陳勇霆
研究生(英文) Yung-Ting Chen
學號 t6696103
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-陳文玲
共同指導教授-楊俊佑
口試委員-林呈鳳
中文關鍵字 前十字韌帶重建術  神經肌肉訓練  著地策略  旋轉控制 
英文關鍵字 Anterior cruciate ligament reconstruction  neuromuscular training  landing strategies  tibial rotation control 
學科別分類
中文摘要 研究背景:前十字韌帶(ACL)損傷發生率之高,尤以年輕運動選手為甚,其可能呈現關節失穩甚或導致膝功能不良,嚴重者常需接受前十字韌帶重建手術(ACLR)治療以改善日常功能。此外,術後復健運動扮演重要角色,相關研究不斷推陳出新,企圖尋求最理想之復健訓練計畫,然而至今相關報告仍多著重在矢狀面之動作分析。另一方面,近期研究指出單束ACLR手術方式雖有助於膝關節穩定度之重建但常潛藏旋轉控制異常之問題,並可能因而提高軟骨磨損或關節退化的發生。過去文獻已證實於著地瞬間之膝屈曲角度偏低是ACL主要損傷機制之一,有關膝關節軟著地的訓練已有多人提倡。反之,生物力學相關研究顯示脛內旋乃前十字韌帶之危險因子,然而至今有關膝旋轉控制的研究仍非常有限,針對膝旋轉控制異常進行運動訓練的療效報告更是缺乏。目的:(1) 調查前十字韌帶重建手患者於術後兩年在跳躍著地過程是否採取異常膝旋轉控制;(2) 針對異常膝旋控制設計特殊神經肌肉訓練(neuromuscular training)運動並進行療效分析與比較。研究方法:本研究共延攬 10位ACLR患者進行長於三個月的特殊神經肌肉訓練並於訓練前後施予完整的評估以分析療效。評估項目包含基本資料詢問、膝功能問卷評估、下肢物理檢查、ACL鬆弛度檢測、大腿周徑測量、膝外旋關節活動度與膝部肌肉肌力測量、以及單腳跳躍測試之動作與肌電訊號分析。最後以魏氏符號等級測試檢定健患側兩腳間於訓練前或訓練後之差異,並檢定患側腳於運動介入前後之變化。結果:本研究結果顯示,患側腳雖於訓練後膝功能評估量表IKDC顯著提昇(p<0.05),唯仍不如健側腳。患側腳之韌帶鬆弛度未因高強度運動訓練而惡化,然相較於健側仍呈現顯著較鬆弛之現象(p<0.05)。另一方面,患側膝屈肌及膝伸肌肌力於訓練後均有提昇且已與健側相仿未呈現兩腳間之顯著差異。而在單腳跳躍距離方面,患側腳亦於訓練後呈現顯著進步(p<0.05)且健患側之跳躍對稱指數從13.1%降低至4.9%,與健側表現之落差大幅減小。更令人印象深刻的是患者於訓練後所採取之跳躍著地策略呈現明顯改變,所有在訓練前採用較危險的TIR著地策略者於訓練後已然改採較安全之TER著地策略,且無論在膝功能、肌力與跳躍表現方面亦未呈現代償性的降低表現;而原先即採較安全的TER著地策略組則是繼續維持其著地策略,且於訓練後跳躍表現有顯著提昇(p<0.05)。結論:本研究已具體量化患者於跳躍著地期間採取的旋轉控制策略,並證實單束前十字韌帶重建手術確實存在異常膝旋轉控制。此外,術後兩年以上之患者在經過至少三個月特殊神經肌肉訓練後仍可顯著提昇膝部肌肉肌力;且於挑戰高強度的動作如單腳跳躍時不但在跳躍距離有顯著進步,更有意義的是使原先採危險TIR著地策略之所有患者均改採正常且較安全的TER著地策略。本研究結果已提供具體證據,支持強調膝旋轉控制的神經肌肉訓練有助於提昇膝關節動作控制能力,降低相關危險因子的影響或能達成降低前十字韌帶損傷再發率的目標。

英文摘要 Background: Anterior cruciate ligament (ACL) rupture is common injury among young athletes. The patients might suffer functional impairment and instability, and ACL reconstruction (ACLR) surgeries were generally recommended to restore knee function and stability. Besides, numerous studies endeavored to develop an optimal rehabilitation program to restore knee function or to design injury prevention programs. However, these studies mainly focused on sagittal plane analysis in landing phase. On the other hand, recent studies have shown that single-bundle ACL reconstruction may not restore tibial rotation even though anterior tibial translation has been reestablished. Although current literature demonstrates that small knee flexion angle during landing was the major ACL loading mechanisms, several biomechanical studies have shown that tibial internal rotation was also the risk factor forACL injury. However, little has been done to investigate the control strategy on transverse plane in one-leg hopping test or to investigate the effects of exercise training focusing on tibial rotatory control. Purpose: To investigate the landing strategies for the patients with ACLR 2 years post surgery and the effects of neuromuscular training focusing on the control of tibial rotation. Methods: 10 ACLR subjects (9 subjects with BPTB and 1 subject with ST/G) were recruited to execute the neuromuscular training for at least three months. The assessments for knee function, ACL laxity, knee strength, the circumference of thigh, and one leg hopping test were conducted before and after training. Kinematic and electromyography data were collected simultaneously during one leg hopping test. Landing strategies were especially analyzed focusing on the control of tibial rotation immediately after landing. Several Wilcoxon signed ranked tests were conducted to examine the differences in the related measurements between the reconstructed legs and the uninvolved legs for the base-line assessment and the assessment after training. The training effects for the reconstructed legs were also examined by the Wilcoxon signed ranked tests. Results: Significantly improved knee function, stronger knee flexors and extensors, and significantly larger hopping distance were found in the reconstructed legs after completing the training protocol. After neuromuscular training, symmetry index of hopping distance was decreased from 13.1% to 4.9%. Moreover, significant alternations in landing strategies were observed in all subjects who had hopped with more dangerous landing strategy (TIR). After training, all the subjects adopted TER landing strategies with significantly improved neuromuscular efficiency of hamstrings and a trend of more knee flexion angle and less internal rotation angle at landing. Conclusion: This study was the first research to identify the landing strategies focusing on tibial rotation control immediately after landing for patients with single-bundle ACLR. Nearly one third of patients were found to adopt TIR landing strategies which might render ACL into higher re-injury rate. However, after undertaking more than 3 months of neuromuscular training, alternations of tibial rotation control were found in subjects with TIR strategies and significantly improved hopping distance were found in all ACLR subjects. In this study, abnormal landing strategies have been proved to be a modifiable factor. With properly designed neuromuscular training program, significantly improvement in knee function, knee strength and hopping performance were reported and the reduction of ACL re-injury rate could be expected.
論文目次 中文摘要 .......................................................................................................................... 1
英文摘要 .......................................................................................................................... 3
致謝 ................................................................................................................................. 5
目錄 ................................................................................................................................. 6
表目錄 ............................................................................................................................ 10
圖目錄 ............................................................................................................................ 11
第一章 簡介與文獻回顧 ............................................................................................... 12
一、前十字韌帶損傷機制 ...................................................................................... 12
1.1 生物力學的危險因子 ............................................................................... 12
1.1.1矢狀面上的因素 ............................................................................. 12
1.1.2 冠狀面或橫斷面上的因素 ............................................................. 14
1.2 外在危險因子 ........................................................................................... 15
1.3 內在危險因子 ........................................................................................... 15
二、常見前十字韌帶損傷之處置-前十字韌帶重建手術 ...................................... 17
三、單束前十字韌帶重建手術潛藏問題–膝旋轉控制異常 .................................. 18
3.1手術無法恢復膝旋轉控制 ........................................................................ 18
3.1.1 屍體研究 ........................................................................................ 18
3.1.2 活體研究 ........................................................................................ 19
3.2退化性關節炎 ............................................................................................ 20
四、前十字韌帶重建術後復建運動/計畫 .............................................................. 21
4.1 常見復建運動訓練 ................................................................................... 21
4.1.1 肌力訓練 ........................................................................................ 21
4.1.2 本體感覺/平衡訓練 ....................................................................... 22
4.1.3 神經肌肉訓練 ................................................................................ 22
4.2 術後復健之相關報告 ............................................................................... 23
五、相關脛/膝旋轉控制文獻 ................................................................................. 24
5.1 脛旋轉關節活動度 ................................................................................... 24
5.2 脛旋轉肌力............................................................................................... 24
5.3 脛旋轉之動作分析 ................................................................................... 25
六、單腳跳躍測詴 ................................................................................................. 26
6.1 單腳跳躍之起跳期 ................................................................................... 26
6.2 單腳跳躍之著地期 ................................................................................... 27
七、研究動機 ......................................................................................................... 28
八、研究目的 ......................................................................................................... 29九、研究問題 ......................................................................................................... 29
十、研究假設 ......................................................................................................... 29
第二章 研究方法 ........................................................................................................... 30
一、研究對象 ......................................................................................................... 30
二、研究儀器與設備.............................................................................................. 30
2.1 十字韌帶鬆弛度檢測儀 ........................................................................... 30
2.2 三維動作分析系統 ................................................................................... 31
2.3 力板系統 .................................................................................................. 32
2.4 肌電訊號量測儀 ....................................................................................... 32
2.5拉力測量系統 ............................................................................................ 33
2.6量角器 ....................................................................................................... 33
2.7傾角器 ....................................................................................................... 34
三、評估項目與流程.............................................................................................. 34
四、測詴方法 ......................................................................................................... 34
4.1 Tegner活動層級評估 ................................................................................ 34
4.2 物理檢查 .................................................................................................. 35
4.2.1 艾利氏檢定 .................................................................................... 35
4.2.2 直腿向上抬高測詴 ........................................................................ 35
4.3 膝關節功能問卷評估 ............................................................................... 35
4.3.1 IKDC膝功能評估量表 ................................................................... 35
4.3.2 Lysholm膝功能評估量表 ............................................................... 37
4.4大腿周徑測量 ............................................................................................ 38
4.5肌四頭角度測量 ........................................................................................ 38
4.6 前十字韌帶鬆弛度測量 ........................................................................... 39
4.7 反光球與電極貼片之定位 ....................................................................... 40
4.7.1 反光球擺位 .................................................................................... 40
4.7.2 電極貼片擺位 ................................................................................ 40
4.8 膝外旋關節活動度測量 ........................................................................... 41
4.9 單腳跳躍測詴之動作測量 ....................................................................... 41
4.10 膝關節最大等長肌力測量...................................................................... 42
五、神經肌肉訓練計畫 .......................................................................................... 43
5.1斜向膝關節穩度訓練 ................................................................................ 43
5.2連續蹲跳訓練 ............................................................................................ 45
六、資料處理與分析.............................................................................................. 45
6.1 VICON收集之資料處理與輸出 ............................................................... 45
6.2 資料分析 .................................................................................................. 46
6.2.1 膝外旋關節活動度 ........................................................................ 46
6.2.2 單腳跳躍動作與肌電訊號 ............................................................. 47
6.2.2.1 單腳跳躍距離計算 .............................................................. 47
6.2.2.2 運動學 ................................................................................. 47
6.2.2.3 肌電訊號 ............................................................................. 49
6.2.2.3.1 肌電訊號基本處理程序如下敘述: ........................ 49
6.2.2.3.2 肌電訊號正常化分析 ............................................... 49
6.2.2.3.3 單腳跳躍動作之肌電訊號 ........................................ 49
6.2.3膝部肌肉之等長肌力...................................................................... 50
七、資料統計與分析.............................................................................................. 50
第三章、結果 ................................................................................................................. 51
一、受詴者基本資料.............................................................................................. 51
二、膝關節功能問卷評估 ...................................................................................... 51
三、前十字韌帶鬆弛度 .......................................................................................... 52
四、大腿周徑 ......................................................................................................... 52
五、局部柔軟度 ..................................................................................................... 53
六、股四頭肌角度 ................................................................................................. 53
七、膝外旋關節活動度 .......................................................................................... 53
八、膝部肌肉最大等長肌力 .................................................................................. 54
8.1 膝部肌肉之最大等長肌力 ....................................................................... 54
8.2 膝部肌肉肌力之缺損比例 ....................................................................... 54
8.3 膝部肌肉之肌力比值 ............................................................................... 55
九、最大自主收縮肌電訊號 .................................................................................. 55
十、單腳跳躍動作與肌電訊號分析 ...................................................................... 56
10.1單腳跳躍距離 .......................................................................................... 57
10.2運動學 ..................................................................................................... 57
10.2.1膝關節瞬間活動度 ....................................................................... 57
10.2.2跳躍分期期間長短 ....................................................................... 59
10.2.3跳躍分期之角位移量 .................................................................... 60
10.2.4跳躍分期之角速度 ....................................................................... 62
10.3肌電訊號 ................................................................................................. 63
10.3.1跳躍分期之平均肌電訊號 ............................................................ 63
10.3.2跳躍分期之膝肌群拮抗比值與共同收縮值 ................................. 66
10.3.3不同跳躍策略之訓練前後參數整理............................................. 70
第四章、討論 ................................................................................................................. 72
一、膝關節功能問卷評估比較 .............................................................................. 72
二、前十字韌帶鬆弛度比較 .................................................................................. 73
三、大腿周徑比較 ................................................................................................. 74
四、局部柔軟度比較.............................................................................................. 75
五、股四頭肌角度比較 .......................................................................................... 75
六、膝外旋關節活動度比較 .................................................................................. 76
七、膝部肌肉最大等長肌力比較 .......................................................................... 76
八、單腳跳躍動作控制比較 .................................................................................. 78
8.1單腳跳躍距離比較 .................................................................................... 79
8.2 跳躍瞬間膝關節活動角度比較 ................................................................ 81
8.3跳躍分期期間長短比較 ............................................................................ 83
8.4跳躍分期之角位移量及角速度比較 ......................................................... 84
8.5跳躍分期肌電訊號比較 ............................................................................ 85
九、研究限制 ......................................................................................................... 89
十、臨床貢獻 ......................................................................................................... 90
第五章、結論 ................................................................................................................. 90
第六章、參考文獻 ......................................................................................................... 91
附錄一:人體試驗委員會同意書 ................................................................................ 101
附錄二:Tegner 活動層級量表 ................................................................................... 103
附錄三:IKDC 膝功能評估量表 ................................................................................ 104
附錄四:Lysholm膝功能評估量表 ............................................................................. 108
附錄五:神經肌肉訓練計畫 ........................................................................................ 109
參考文獻 1. Majewski, M., H. Susanne, and S. Klaus, Epidemiology of athletic knee injuries: A 10-year study. Knee, 2006. 13(3): p. 184-8.
2. Arnold, J.A., et al., Natural history of anterior cruciate tears. Am J Sports Med, 1979. 7(6): p. 305-13.
3. Boden, B.P., et al., Mechanisms of anterior cruciate ligament injury. Orthopedics, 2000. 23(6): p. 573-8.
4. Olsen, O.E., et al., Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med, 2004. 32(4): p. 1002-12.
5. Renstrom, P., et al., Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med, 2008. 42(6): p. 394-412.
6. Shimokochi, Y. and S.J. Shultz, Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train, 2008. 43(4): p. 396-408.
7. Butler, D.L., F.R. Noyes, and E.S. Grood, Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am, 1980. 62(2): p. 259-70.
8. Woo, S.L.Y., et al., Biomechanics of the ACL: Measurements of in situ force in the ACL and knee kinematics. Knee, 1998. 5(4): p. 267-288.
9. Sakane, M., et al., Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc, 1999. 7(2): p. 93-7.
10. Arms, S.W., et al., The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med, 1984. 12(1): p. 8-18.
11. Li, G., et al., The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech, 1999. 32(4): p. 395-400.
12. Li, G., et al., In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res, 2004. 22(2): p. 293-7.
13. Markolf, K.L., et al., Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Am J Sports Med, 2004. 32(5): p. 1144-9.
14. Beynnon, B.D., et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med, 1995. 23(1): p. 24-34.
15. Heijne, A., et al., Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc, 2004. 36(6): p. 935-41.
16. Fleming, B.C., et al., The effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech, 2001. 34(2): p. 163-70.
17. Markolf, K.L., et al., Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res, 1995. 13(6): p. 930-5.
18. Kanamori, A., et al., The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy, 2000. 16(6): p. 633-9.
19. Kanamori, A., et al., The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy, 2002. 18(4): p. 394-8.
20. Brophy, R.H., H.J. Silvers, and B.R. Mandelbaum, Anterior cruciate ligament injuries: etiology and prevention. Sports Med Arthrosc, 2010. 18(1): p. 2-11.
21. Paul, J.J., et al., Jumping versus nonjumping anterior cruciate ligament injuries: a comparison of pathology. Clin J Sport Med, 2003. 13(1): p. 1-5.
22. de Loes, M., L.J. Dahlstedt, and R. Thomee, A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand J Med Sci Sports, 2000. 10(2): p. 90-7.
23. Hewett, T.E., G.D. Myer, and K.R. Ford, Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med, 2006. 34(2): p. 299-311.
24. Arendt, E. and R. Dick, Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med, 1995. 23(6): p. 694-701.
25. Booth, F.W. and C.M. Tipton, Ligamentous strength measurements in pre-pubescent and pubescent rats. Growth, 1970. 34(2): p. 177-85.
26. Samuel, C.S., et al., The effect of relaxin on collagen metabolism in the nonpregnant rat pubic symphysis: the influence of estrogen and progesterone in regulating relaxin activity. Endocrinology, 1996. 137(9): p. 3884-90.
27. Sarwar, R., B.B. Niclos, and O.M. Rutherford, Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol, 1996. 493 ( Pt 1): p. 267-72.
28. James, C.R., et al., Gender differences among sagittal plane knee kinematic and ground reaction force characteristics during a rapid sprint and cut maneuver. Res Q Exerc Sport, 2004. 75(1): p. 31-8.
29. Malinzak, R.A., et al., A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon), 2001. 16(5): p. 438-45.
30. Kernozek, T.W., et al., Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc, 2005. 37(6): p. 1003-12; discussion 1013.
31. Kiriyama, S., H. Sato, and N. Takahira, Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee. Am J Sports Med, 2009. 37(1): p. 168-74.
32. Nagano, Y., et al., Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee, 2007. 14(3): p. 218-23.
33. Colby, S., et al., Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior cruciate ligament injury. Am J Sports Med, 2000. 28(2): p. 234-40.
34. Myer, G.D., K.R. Ford, and T.E. Hewett, The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol, 2005. 15(2): p. 181-9.
35. Rozzi, S.L., et al., Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med, 1999. 27(3): p. 312-9.
36. Ageberg, E., Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation - using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol, 2002. 12(3): p. 205-12.
37. Bonfim, T.R., C.A. Jansen Paccola, and J.A. Barela, Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil, 2003. 84(8): p. 1217-23.
38. Fischer-Rasmussen, T. and P.E. Jensen, Proprioceptive sensitivity and performance in anterior cruciate ligament-deficient knee joints. Scand J Med Sci Sports, 2000. 10(2): p. 85-9.
39. Lysholm, M., et al., Postural control--a comparison between patients with chronic anterior cruciate ligament insufficiency and healthy individuals. Scand J Med Sci Sports, 1998. 8(6): p. 432-8.
40. Reider, B., et al., Proprioception of the knee before and after anterior cruciate ligament reconstruction. Arthroscopy, 2003. 19(1): p. 2-12.
41. Meunier, A., M. Odensten, and L. Good, Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up. Scand J Med Sci Sports, 2007. 17(3): p. 230-7.
42. Aglietti, P., et al., Patellar tendon versus doubled semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction. Am J Sports Med, 1994. 22(2): p. 211-7; discussion 217-8.
43. Jarvela, T., P. Kannus, and M. Jarvinen, Anterior knee pain 7 years after an anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Scand J Med Sci Sports, 2000. 10(4): p. 221-7.
44. Kartus, J., et al., Complications following arthroscopic anterior cruciate ligament reconstruction. A 2-5-year follow-up of 604 patients with special emphasis on anterior knee pain. Knee Surg Sports Traumatol Arthrosc, 1999. 7(1): p. 2-8.
45. Breitfuss, H., et al., The tendon defect after anterior cruciate ligament reconstruction using the midthird patellar tendon--a problem for the patellofemoral joint? Knee Surg Sports Traumatol Arthrosc, 1996. 3(4): p. 194-8.
46. Spindler, K.P., et al., Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med, 2004. 32(8): p. 1986-95.
47. Beynnon, B.D., et al., Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am, 2002. 84-A(9): p. 1503-13.
48. Ejerhed, L., et al., Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up. Am J Sports Med, 2003. 31(1): p. 19-25.
49. Elmlinger, B.S., J.A. Nyland, and E.D. Tillett, Knee flexor function 2 years after anterior cruciate ligament reconstruction with semitendinosus-gracilis autografts. Arthroscopy, 2006. 22(6): p. 650-5.
50. Keays, S.L., et al., Muscle strength and function before and after anterior cruciate ligament reconstruction using semitendonosus and gracilis. Knee, 2001. 8(3): p. 229-34.
51. Anderson, A.F., R.B. Snyder, and A.B. Lipscomb, Jr., Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods. Am J Sports Med, 2001. 29(3): p. 272-9.
52. Nakamura, N., et al., Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy, 2002. 18(6): p. 598-602.
53. Chouliaras, V., et al., Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation. Am J Sports Med, 2007. 35(2): p. 189-96.
54. Ristanis, S., et al., The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc, 2003. 11(6): p. 360-5.
55. Ristanis, S., et al., Excessive tibial rotation during high-demand activities is not restored by anterior cruciate ligament reconstruction. Arthroscopy, 2005. 21(11): p. 1323-9.
56. Tashman, S., et al., Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med, 2004. 32(4): p. 975-83.
57. Georgoulis, A.D., et al., Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med, 2003. 31(1): p. 75-9.
58. Woo, S.L., et al., The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon . A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am, 2002. 84-A(6): p. 907-14.
59. Brandsson, S., et al., Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiostereometric studies. Am J Sports Med, 2002. 30(3): p. 361-7.
60. Fink, C., et al., Long-term outcome of operative or nonoperative treatment of anterior cruciate ligament rupture--is sports activity a determining variable? Int J Sports Med, 2001. 22(4): p. 304-9.
61. Kessler, M.A., et al., Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc, 2008. 16(5): p. 442-8.
62. Lohmander, L.S., et al., High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum, 2004. 50(10): p. 3145-52.
63. Andriacchi, T.P. and C.O. Dyrby, Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech, 2005. 38(2): p. 293-8.
64. Chaudhari, A.M., et al., Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc, 2008. 40(2): p. 215-22.
65. Risberg, M.A., et al., Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial. Phys Ther, 2007. 87(6): p. 737-50.
66. Risberg, M.A., et al., Design and implementation of a neuromuscular training program following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther, 2001. 31(11): p. 620-31.
67. Myer, G.D., et al., Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther, 2006. 36(6): p. 385-402.
68. Ageberg, E., A. Pettersson, and T. Friden, 15-year follow-up of neuromuscular function in patients with unilateral nonreconstructed anterior cruciate ligament injury initially treated with rehabilitation and activity modification: a longitudinal prospective study. Am J Sports Med, 2007. 35(12): p. 2109-17.
69. Keays, S.L., et al., A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med, 2007. 35(5): p. 729-39.
70. Myer, G.D., et al., The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res, 2006. 20(2): p. 345-53.
71. Tagesson, S., et al., A comprehensive rehabilitation program with quadriceps strengthening in closed versus open kinetic chain exercise in patients with anterior cruciate ligament deficiency: a randomized clinical trial evaluating dynamic tibial translation and muscle function. Am J Sports Med, 2008. 36(2): p. 298-307.
72. Myer, G.D., et al., Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res, 2008. 22(3): p. 987-1014.
73. Anderson, J.L., et al., Changes in muscle torque following anterior cruciate ligament reconstruction: a comparison between hamstrings and patella tendon graft procedures on 45 patients. Acta Orthop Scand, 2002. 73(5): p. 546-52.
74. Feller, J.A. and K.E. Webster, A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med, 2003. 31(4): p. 564-73.
75. Williams, G.N., et al., Muscle and tendon morphology after reconstruction of the anterior cruciate ligament with autologous semitendinosus-gracilis graft. J Bone Joint Surg Am, 2004. 86-A(9): p. 1936-46.
76. Irie, K. and T. Tomatsu, Atrophy of semitzendinosus and gracilis and flexor mechanism function after hamstring tendon harvest for anterior cruciate ligament reconstruction. Orthopedics, 2002. 25(5): p. 491-5.
77. Yack, H.J., C.E. Collins, and T.J. Whieldon, Comparison of closed and open kinetic chain exercise in the anterior cruciate ligament-deficient knee. Am J Sports Med, 1993. 21(1): p. 49-54.
78. Wilk, K.E., et al., A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med, 1996. 24(4): p. 518-27.
79. Beynnon, B.D., et al., The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med, 1997. 25(6): p. 823-9.
80. Sekir, U., H. Gur, and B. Akova, Early versus late start of isokinetic hamstring-strengthening exercise after anterior cruciate ligament reconstruction with patellar tendon graft. Am J Sports Med, 2010. 38(3): p. 492-500.
81. Barrack, R.L., H.B. Skinner, and S.L. Buckley, Proprioception in the anterior cruciate deficient knee. Am J Sports Med, 1989. 17(1): p. 1-6.
82. Barrett, D.S., Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br, 1991. 73(5): p. 833-7.
83. Cooper, R.L., N.F. Taylor, and J.A. Feller, A systematic review of the effect of proprioceptive and balance exercises on people with an injured or reconstructed anterior cruciate ligament. Res Sports Med, 2005. 13(2): p. 163-78.
84. Risberg, M.A. and I. Holm, The long-term effect of 2 postoperative rehabilitation programs after anterior cruciate ligament reconstruction: a randomized controlled clinical trial with 2 years of follow-up. Am J Sports Med, 2009. 37(10): p. 1958-66.
85. Gerber, J.P., et al., Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction. J Bone Joint Surg Am, 2007. 89(3): p. 559-70.
86. Liu-Ambrose, T., et al., The effects of proprioceptive or strength training on the neuromuscular function of the ACL reconstructed knee: a randomized clinical trial. Scand J Med Sci Sports, 2003. 13(2): p. 115-23.
87. Pinczewski, L.A., et al., A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med, 2002. 30(4): p. 523-36.
88. Nordt, W.E., 3rd, et al., The in vivo assessment of tibial motion in the transverse plane in anterior cruciate ligament-reconstructed knees. Am J Sports Med, 1999. 27(5): p. 611-6.
89. Muaidi, Q.I., et al., Effect of anterior cruciate ligament injury and reconstruction on proprioceptive acuity of knee rotation in the transverse plane. Am J Sports Med, 2009. 37(8): p. 1618-26.
90. Armour, T., et al., Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction. Am J Sports Med, 2004. 32(7): p. 1639-43.
91. Torry, M.R., et al., Comparison of tibial rotation strength in patients' status after anterior cruciate ligament reconstruction with hamstring versus patellar tendon autografts. Clin J Sport Med, 2004. 14(6): p. 325-31.
92. Maletis, G.B., et al., A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med, 2007. 35(3): p. 384-94.
93. Zhang, L.Q., et al., Multiaxis muscle strength in ACL deficient and reconstructed knees: compensatory mechanism. Med Sci Sports Exerc, 2002. 34(1): p. 2-8.
94. Fitzgerald, G.K., et al., Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther, 2001. 31(10): p. 588-97.
95. Irrgang, J.J., et al., Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 1998. 6(2): p. 107-14.
96. Keays, S.L., et al., The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res, 2003. 21(2): p. 231-7.
97. Sekiya, I., et al., Significance of the single-legged hop test to the anterior cruciate ligament-reconstructed knee in relation to muscle strength and anterior laxity. Am J Sports Med, 1998. 26(3): p. 384-8.
98. Rudolph, K.S., M.J. Axe, and L. Snyder-Mackler, Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc, 2000. 8(5): p. 262-9.
99. Blackburn, J.T. and D.A. Padua, Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train, 2009. 44(2): p. 174-9.
100. Lephart, S.M., et al., Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res, 2002(401): p. 162-9.
101. Augustsson, J., R. Thomee, and J. Karlsson, Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2004. 12(5): p. 350-6.
102. Webster, K.E., R. Gonzalez-Adrio, and J.A. Feller, Dynamic joint loading following hamstring and patellar tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2004. 12(1): p. 15-21.
103. Tegner, Y. and J. Lysholm, Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res, 1985(198): p. 43-9.
104. Magee, D.J., Orthopedic Physical Assessment Enhanced Edition, 4th Edition. 2002.
105. 2000 IKDC SUBJECTIVE KNEE EVALUATION FORM. http://www.sportsmed.org/tabs/research/downloads/IKDC%202000-Revised%20Subjective%20Scoring.pdf.
106. Irrgang, J.J., et al., Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med, 2001. 29(5): p. 600-13.
107. Lysholm, J. and J. Gillquist, Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med, 1982. 10(3): p. 150-4.
108. Cheng, C.C., Functional outcome and gait analysis after anterolateral thigh flap reconstruction surgery: follow-up and cress-sectional design. 2007.
109. Plug-in Gait model. http://www.irc-web.co.jp/vicon_web/news_bn/PIGManualver1.pdf.
110. Cram, J.R., Kasman, G.S. , Introduction to surface electromyography. 1988.
111. Noyes, F.R., S.D. Barber, and R.E. Mangine, Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med, 1991. 19(5): p. 513-8.
112. 陳勇霆, 陳文玲, 常見下肢復健運動在膝旋轉肌群共同收縮狀態方面之比較. 中華民國物理治療學會第58次學術研討會, 2009.
113. Shultz, S.J., et al., Thigh Strength and Activation as Predictors of Knee Biomechanics during a Drop Jump Task. Med Sci Sports Exerc, 2009.
114. 陳勇霆, 李俊賢,楊俊佑,陳文玲, 前十字韌帶重建手術患者為求表現所採取之異常跳躍策略. 中華民國物理治療學會第59次學術研討會, 2009.
115. Webster, K.E., et al., Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am J Sports Med, 2005. 33(2): p. 247-54.
116. Dunn, W.R. and K.P. Spindler, Predictors of activity level 2 years after anterior cruciate ligament reconstruction (ACLR): a Multicenter Orthopaedic Outcomes Network (MOON) ACLR cohort study. Am J Sports Med, 2010. 38(10): p. 2040-50.
117. Laxdal, G., et al., A prospective randomized comparison of bone-patellar tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction. Arthroscopy, 2005. 21(1): p. 34-42.
118. Rudroff, T., Functional capability is enhanced with semitendinosus than patellar tendon ACL repair. Med Sci Sports Exerc, 2003. 35(9): p. 1486-92.
119. Jarvela, T., et al., Simple measurements in assessing muscle performance after an ACL reconstruction. Int J Sports Med, 2002. 23(3): p. 196-201.
120. Powers, C.M., The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther, 2003. 33(11): p. 639-46.
121. Nagamine, R., et al., Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res, 1994(304): p. 262-71.
122. Kannus, P., Ratio of hamstring to quadriceps femoris muscles' strength in the anterior cruciate ligament insufficient knee. Relationship to long-term recovery. Phys Ther, 1988. 68(6): p. 961-5.
123. Barber, S.D., et al., Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res, 1990(255): p. 204-14.
124. Hopper, D.M., et al., Functional recovery after anterior cruciate ligament reconstruction: a longitudinal perspective. Arch Phys Med Rehabil, 2008. 89(8): p. 1535-41.
125. Deneweth, J.M., et al., Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Am J Sports Med, 2010. 38(9): p. 1820-8.
126. Orishimo, K.F., et al., Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010. 18(11): p. 1587-93.
127. Decker, M.J., et al., Landing adaptations after ACL reconstruction. Med Sci Sports Exerc, 2002. 34(9): p. 1408-13.
128. Li, G., et al., The coupled motion of the femur and patella during in vivo weightbearing knee flexion. J Biomech Eng, 2007. 129(6): p. 937-43.
129. Bonnard, M., et al., Different strategies to compensate for the effects of fatigue revealed by neuromuscular adaptation processes in humans. Neurosci Lett, 1994. 166(1): p. 101-5.
130. Nyland, J., et al., Single leg jumping neuromuscular control is improved following whole body, long-axis rotational training. J Electromyogr Kinesiol, 2010.
131. Bruhn, S., N. Kullmann, and A. Gollhofer, The effects of a sensorimotor training and a strength training on postural stabilisation, maximum isometric contraction and jump performance. Int J Sports Med, 2004. 25(1): p. 56-60.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-01-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-01-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw