進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2612201821401500
論文名稱(中文) 摻雜對石墨烯電極特性之影響
論文名稱(英文) Effect of doping on the properties of graphene electrodes
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 1
出版年 107
研究生(中文) 鄭凱文
研究生(英文) Kai-Wen Chang
電子信箱 vivayota24@gmail.com
學號 N58031104
學位類別 博士
語文別 英文
論文頁數 111頁
口試委員 指導教授-蘇彥勳
共同指導教授-謝馬利歐
口試委員-謝雅萍
口試委員-陳永芳
口試委員-陳俊維
中文關鍵字 石墨烯  摻雜  電荷轉移效率 
英文關鍵字 graphene  doping  Charge Transfer Rate  Morphology 
學科別分類
中文摘要 石墨烯是一種很有前景的材料,可應用於電子,感應器和儲能設備中的電極。為了增加其本身能帶結構賦予之固有電荷載子濃度,必須進行電子或電洞之電荷摻雜。本篇論文研究電荷與石墨烯之間的相互作用,以了解摻雜石墨烯電極的極限與應用。
首先,對於摻雜劑和石墨烯之間的電荷轉移研究發現,有校的電荷轉移效率只有預期值的5%。該問題源自於小摻雜劑群體的幾何電容非常的低,於是我們發展了一個處理步驟的組合以增加摻雜劑簇尺寸和幾何電容。我們證明增加的表面能可以將電荷轉移效率提高到70%,並生產出一個超透明的電極,其在97%透射率下顯示出106Ω/ sq 的電阻,這是摻雜單層石墨烯的最高報告性能,並且與市面上販售之透明導體產品相當。
然而,我們發現增加摻雜劑群體的尺寸對石墨烯中的載流子傳輸產生負面的影響。使用原位光譜和霍爾效應的量測,我們證明在高摻雜劑覆蓋下會發生載流子的滲透傳輸,這降低了載流子遷移率卻不能增加載流子濃度,導致電阻增加,這代表了對有效摻雜的第一次觀察。
最後,我們揭示了石墨烯在電化學電極中的應用,將會受摻雜劑之存在與其特性而影響。在一片石墨烯中使用微米級電極陣列,在不同位置有不同的摻雜程度,我們發現其很大的影響了異質電荷轉移率(HCT)。靜電摻雜可以利用這種現象並動態調整石墨烯的電化學反應性超過一個數量級。該新特性可用於增強電化學阻抗譜的靈敏度。
英文摘要 Graphene is a promising material for application as electrodes in electronic, sensing and energy storage devices. To increase the intrinsic charge carrier concentration imparted by its unique band structure, doping with charge donators or acceptors has to be carried out. This thesis investigates the interaction of charges with graphene to identify the limitations and applications of doped graphene electrodes.
First, the study of the charge transfer between dopants and graphene reveals a limited charge transfer efficiency as low as 5% of the expected values. This issue was found to originate from the low geometrical capacitance of small dopant clusters and a combination of treatment steps was developed to increase the dopant cluster size and eometrical capacitance. Increased surface energy was demonstrated to increase the charge transfer efficiency to 70% and yield ultra-transparent electrodes that showed resistances of 106 Ω/sq at 97% transmittance which represents the highest reported performance for doped
single layer graphene and is on par with commercially available transparent conductors.
However, the increase in dopant cluster size was found to negatively impact the carrier transport in graphene. Using in-situ spectroscopic and Hall effect characterization we demonstrate that at high dopant coverage percolative transport occurs that decreases the carrier mobility without increasing the carrier concentration resulting in an increasing resistance which represents the first observation of a window for useful doping.
Finally, we show that the application of graphene to electrochemical electrodes is affected by the presence and character of dopants. Employing micro-electrode arrays within one sheet of graphene we find large variations in the heterogeneous charge transfer rate (HCT) that correlates with the spatially varying doping level. Electrostatic doping can exploit this phenomenon and dynamically tune the electrochemical reactivity of graphene over an order of magnitude. This novel property was applied to enhance the sensitivity of Electrochemical Impedance Spectroscopy.
論文目次 Abstract I
中文摘要 II
誌謝 III
Table of contants IV
List of figures VII
1 Introduction 1
1-1 Graphene History 1
1-2 Electronic Properties of Graphene 2
1-3 Optical properties of graphene 4
1-4 Graphene doping 5
1-5 Graphene electrochemistry 7
1-5.1 Electrochemistry basic7
1-5.2 Edge plane and Basal plane 10
1-5.3 Charge Transfer Kinetic of Graphene 13
1-5.4 Defect Density and Heterogeneous Electron Transfer Rate 15
2 Experimental Methods 17
2-1 Graphene fabrication 17
2-2 PMMA removal 19
2-3 UV ozone surface treatment 21
2-3.1 Extraction of binding energy 22
2-3.2 Detailed Raman characterization 22
2-3.3 Quantifying adsorbate coverage by Raman spectroscopy 24
2-3.4 EFM measurements 26
2-3.5 Impact of work function on charge transfer efficiency 27
2-3.6 Graphene/DI water contact angle 28
2-4 Gold Doping 30
2-4.1 concentration dependent work function 32
2-4.2 Figure of merit 33
2-5 Electrochemical Process 37
2-5.1 Pattern Design 37
2-5.2 Electrolyte Preparation 40
2-5.3 Cyclic Voltammetry 42
2-5.4 Raman mapping 47
2-5.5 Diffusion simulation 48
2-5.6 Cyclic voltammetry Fitting 51
2-5.8 EIS 52
2-5.9 Connection between SMU and potentiostat 58
3 Dopant morphology as the factor limiting graphene conductivity 61
3-1 Dopant Morphology 64
3-2 Doping limitation 67
3-3 Conclusion 72
4 Increasing the doping efficiency by surface energy control 74
4-1 Charge Transfer Efficiency 77
4-2 Surface Energy Control 82
4-1 Conclusions 86
5 Electrostatic control over the electrochemical reactivity of graphene 90
5-1 Graphene Electrode Reaction Rate 92
5-2 Back Gate controlling reaction rate 98
5-3 conclusion 100
6 Conclusion 102
7 References 104
8 Appendix 111
參考文獻 1. Simpson, C. D.; Brand, J. D.; Berresheim, A. J.; Przybilla, L.; Rader, H. J.; Mullen, K.,
Synthesis of a giant 222 carbon graphite sheet. Chem-Eur J 8, 6, 1424-1429, 2002.
2. Novoselov, K. S., et al., Electric field effect in atomically thin carbon films. Science
306, 5696, 666-669, 2004.
3. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P., Experimental observation of the
quantum Hall effect and Berry's phase in graphene. Nature 438, 7065, 201-204, 2005.
4. Yoon, D.; Moon, H.; Cheong, H.; Choi, J. S.; Choi, J. A.; Park, B. H., Variations in the
Raman Spectrum as a Function of the Number of Graphene Layers. J Korean Phys Soc 55,
3, 1299-1303, 2009.
5. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially
resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7, 2, 238-242,
2007.
6. Heller, I.; Kong, J.; Williams, K. A.; Dekker, C.; Lemay, S. G., Electrochemistry at singlewalled
carbon nanotubes: The role of band structure and quantum capacitance. Journal of
the American Chemical Society 128, 22, 7353-7359, 2006.
7. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.;
Geim, A. K., Two-dimensional atomic crystals. P Natl Acad Sci USA 102, 30, 10451-10453,
2005.
8. Guex, L. G., et al., Experimental review: chemical reduction of graphene oxide (GO) to
reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9, 27, 9562-9571, 2017.
9. Zhu, S. E.; Yuan, S. J.; Janssen, G. C. A. M., Optical transmittance of multilayer
graphene. Epl-Europhys Lett 108, 1, 2014.
10. Jussila, H.; Yang, H.; Granqvist, N.; Sun, Z. P., Surface plasmon resonance for
characterization of large-area atomic-layer graphene film. Optica 3, 2, 151-158, 2016.
11. Lin, X.; Xu, Y.; Zhang, B. L.; Hao, R.; Chen, H. S.; Li, E. P., Unidirectional surface
plasmons in nonreciprocal graphene. New J Phys 15, 2013.
12. McCreery, R. L., Advanced carbon electrode materials for molecular electrochemistry.
Chem. Rev. 108, 7, 2646-2687, 2008.
13. Lee, H.; Paeng, K.; Kim, I. S., A review of doping modulation in graphene. Synthetic
Met 244, 36-47, 2018.
14. Kim, K. K.; Reina, A.; Shi, Y. M.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J., Enhancing the
conductivity of transparent graphene films via doping. Nanotechnology 21, 28, 2010.
15. Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J., Work function engineering
of graphene electrode via chemical doping. ACS Nano 4, 5, 2689-94, 2010.
105
16. Brownson, D. A.; Banks, C. E., Graphene electrochemistry: an overview of potential
applications. Analyst 135, 11, 2768-78, 2010.
17. Jin, B. K.; Zhang, J. R.; Zhang, Z. X., Theory and application of cyclic voltammetry for
measurement of fast electrode kinetics at microdisk electrode. Chinese J Chem 14, 4, 338-
347, 1996.
18. Brownson, D. A. C.; Banks, C. E., Graphene electrochemistry: an overview of potential
applications. Analyst 135, 11, 2768-2778, 2010.
19. Davies, T. J.; Hyde, M. E.; Compton, R. G., Nanotrench arrays reveal insight into
graphite electrochemistry. Angew Chem Int Edit 44, 32, 5121-5126, 2005.
20. Lai, S. C. S.; Patel, A. N.; McKelvey, K.; Unwin, P. R., Definitive Evidence for Fast
Electron Transfer at Pristine Basal Plane Graphite from High-Resolution Electrochemical
Imaging. Angew Chem Int Edit 51, 22, 5405-5408, 2012.
21. Banks, C. E.; Compton, R. G., New electrodes for old: from carbon nanotubes to edge
plane pyrolytic graphite. Analyst 131, 1, 15-21, 2006.
22. Li, W.; Tan, C.; Lowe, M. A.; Abruna, H. D.; Ralph, D. C., Electrochemistry of Individual
Monolayer Graphene Sheets. Acs Nano 5, 3, 2264-2270, 2011.
23. Nicholson, R. S., Theory and Application of Cyclic Voltammetry for Measurement of
Electrode Reaction Kinetics. Anal Chem 37, 11, 1351-+, 1965.
24. Ijsseling, F. P., Electrochemical Methods in Crevice Corrosion Testing - Report
Prepared for the Working Party Physicochemical Methods of Corrosion - Fundamentals
and Applications of the European-Federation-of-Corrosion. Werkst Korros 32, 9, 389-390,
1981.
25. Velicky, M., et al., Electron Transfer Kinetics on Mono- and Multilayer Graphene. Acs
Nano 8, 10, 10089-10100, 2014.
26. Zhong, J.-H., et al., Quantitative correlation between defect density and
heterogeneous electron transfer rate of single layer graphene. Journal of the American
Chemical Society 136, 47, 16609-16617, 2014.
27. Hsieh, Y.-P.; Hofmann, M.; Kong, J., Promoter-assisted chemical vapor deposition of
graphene. Carbon 67, 417-423, 2014.
28. Cancado, L. G., et al., Quantifying Defects in Graphene via Raman Spectroscopy at
Different Excitation Energies. Nano Lett 11, 8, 3190-3196, 2011.
29. Lee, G.; Lee, B.; Kim, J.; Cho, K., Ozone Adsorption on Graphene: Ab Initio Study and
Experimental Validation. J Phys Chem C 113, 32, 14225-14229, 2009.
30. Tao, H. H.; Moser, J.; Alzina, F.; Wang, Q.; Sotomayor-Torres, C. M., The Morphology
of Graphene Sheets Treated in an Ozone Generator. J Phys Chem C 115, 37, 18257-18260,
2011.
31. Lopez, V., et al., Chemical Vapor Deposition Repair of Graphene Oxide: A Route to
Highly Conductive Graphene Monolayers. Adv Mater 21, 46, 4683-+, 2009.
106
32. Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R., Effects of charge transfer interaction of
graphene with electron donor and acceptor molecules examined using Raman
spectroscopy and cognate techniques. J Phys-Condens Mat 20, 47, 2008.
33. Yan, J. A.; Chou, M. Y., Oxidation functional groups on graphene: Structural and
electronic properties. Phys Rev B 82, 12, 2010.
34. Lilliu, S., et al., EFM data mapped into 2D images of tip-sample contact potential
difference and capacitance second derivative. Sci Rep-Uk 3, 2013.
35. Klier, K., Theorie Der Randschicht Fur Einen Begrenzten Krystall Des Adsorbens.
Collect Czech Chem C 27, 4, 920-&, 1962.
36. Shin, H. J., et al., Control of Electronic Structure of Graphene by Various Dopants and
Their Effects on a Nanogenerator. Journal of the American Chemical Society 132, 44,
15603-15609, 2010.
37. Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L. J.; Kong, J., Work function engineering
of graphene electrode via chemical doping. ACS Nano 4, 5, 2689-94, 2010.
38. Iqbal, M. Z.; Siddique, S.; Iqbal, M. W.; Eom, J., Formation of p-n junction with stable
p-doping in graphene field effect transistors using deep UV irradiation. J Mater Chem C 1,
18, 3078-3083, 2013.
39. De, S.; Coleman, J. N., Are There Fundamental Limitations on the Sheet Resistance
and Transmittance of Thin Graphene Films? Acs Nano 4, 5, 2713-2720, 2010.
40. Dressel, M. G., G., Electrodynamics of Solids: Optical Properties of Electrons in
Matter. 2002.
41. Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.;
Craciun, M. F., Novel Highly Conductive and Transparent Graphene-Based Conductors. Adv
Mater 24, 21, 2844-2849, 2012.
42. Laviron, E., General Expression of the Linear Potential Sweep Voltammogram in the
Case of Diffusionless Electrochemical Systems. J Electroanal Chem 101, 1, 19-28, 1979.
43. Oldham, K. B.; Myland, J. C., Extracting parameter values from quasireversible cyclic
voltammograms. J Solid State Electr 16, 12, 3691-3693, 2012.
44. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A
roadmap for graphene. Nature 490, 7419, 192-200, 2012.
45. Katsnelson, M. I.; Novoselov, K. S., Graphene: New bridge between condensed
matter physics and quantum electrodynamics. Solid State Commun 143, 1-2, 3-13, 2007.
46. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Chargedimpurity
scattering in graphene. Nature Physics 4, 5, 377-381, 2008.
47. Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S., A self-consistent theory for
graphene transport. P Natl Acad Sci USA 104, 47, 18392-18397, 2007.
48. Shin, H.-J., et al., Control of Electronic Structure of Graphene by Various Dopants and
Their Effects on a Nanogenerator. Journal of the American Chemical Society 132, 44,
107
15603-15609, 2010.
49. Reich, E. S., Phosphorene excites materials scientists. Nature 506, 7486, 19-19, 2014.
50. Sljivancanin, Z.; Milosevic, A. S.; Popovic, Z. S.; Vukajlovic, F. R., Binding of atomic
oxygen on graphene from small epoxy clusters to a fully oxidized surface. Carbon 54, 482-
488, 2013.
51. Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S., Raman
spectroscopy of graphene and carbon nanotubes. Advances in Physics 60, 3, 413-550,
2011.
52. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 6, 3, 183-191,
2007.
53. Wallace, P. R., The Band Theory of Graphite. Phys Rev 71, 9, 622-634, 1947.
54. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 6, 3, 183-91, 2007.
55. Lee, J., et al., Synergetic electrode architecture for efficient graphene-based flexible
organic light-emitting diodes. Nat Commun 7, 11791, 2016.
56. Gorkina, A. L., et al., Transparent and conductive hybrid graphene/carbon nanotube
films. Carbon 100, 501-507, 2016.
57. Abdullah-Al-Galib, M.; Hou, B.; Shahriad, T.; Zivanovic, S.; Radadia, A. D., Stability of
few layer graphene films doped with gold (III) chloride. Appl. Surf. Sci. 366, 78-84, 2016.
58. Pham, V. P.; Kim, K. H.; Jeon, M. H.; Lee, S. H.; Kim, K. N.; Yeom, G. Y., Low damage
pre-doping on CVD graphene/Cu using a chlorine inductively coupled plasma. Carbon 95,
664-671, 2015.
59. Hwang, E.; Adam, S.; Sarma, S. D., Carrier transport in two-dimensional graphene
layers. Physical review letters 98, 18, 186806, 2007.
60. Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A., Chemical Doping of
Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. Acs
Nano 4, 7, 3839-3844, 2010.
61. Shin, D. H.; Lee, K. W.; Lee, J. S.; Kim, J. H.; Kim, S.; Choi, S. H., Enhancement of the
effectiveness of graphene as a transparent conductive electrode by AgNO3 doping.
Nanotechnology 25, 12, 2014.
62. Khrapach, I.; Withers, F.; Bointon, T. H.; Polyushkin, D. K.; Barnes, W. L.; Russo, S.;
Craciun, M. F., Novel highly conductive and transparent graphene-based conductors. Adv
Mater 24, 21, 2844-9, 2012.
63. Lee, H., et al., A graphene-based electrochemical device with thermoresponsive
microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11, 6, 566-72, 2016.
64. Zanjani, S. M. M.; Sadeghi, M. M.; Holt, M.; Chowdhury, S. F.; Tao, L.; Akinwande, D.,
Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Appl.
Phys. Lett. 108, 3, 2016.
65. Xu, Y. H.; Liu, J. Q., Graphene as Transparent Electrodes: Fabrication and New
108
Emerging Applications. Small 12, 11, 1400-1419, 2016.
66. Lee, H., et al., A graphene-based electrochemical device with thermoresponsive
microneedles for diabetes monitoring and therapy. Nat Nano 11, 6, 566-572, 2016.
67. Oh, S.; Kim, B.-J.; Kim, J., Layer-by-layer AuCl3 doping of stacked graphene films.
physica status solidi (RRL) – Rapid Research Letters 8, 5, 441-444, 2014.
68. Kim, K. K.; Reina, A.; Shi, Y.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J., Enhancing the
conductivity of transparent graphene films via doping. Nanotechnology 21, 28, 285205,
2010.
69. Gunes, F., et al., Layer-by-layer doping of few-layer graphene film. ACS nano 4, 8,
4595-600, 2010.
70. Acton, Q. A., Acrylates—Advances in Research and Application: 2013 Edition.
ScholarlyEditions: 2013.
71. Kim, K. S., et al., Large-scale pattern growth of graphene films for stretchable
transparent electrodes. Nature 457, 7230, 706-10, 2009.
72. Kim, K. K.; Reina, A.; Shi, Y.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J., Enhancing the
conductivity of transparent graphene films via doping. Nanotechnology 21, 28, 285205,
2010.
73. Hsieh, Y. P.; Chiang, W. Y.; Tsai, S. L.; Hofmann, M., Scalable production of graphene
with tunable and stable doping by electrochemical intercalation and exfoliation. PCCP 18,
1, 339-343, 2016.
74. Zhang, Y.; Pluchery, O.; Caillard, L.; Lamic-Humblot, A. F.; Casale, S.; Chabal, Y. J.;
Salmeron, M., Sensing the charge state of single gold nanoparticles via work function
measurements. Nano Lett. 15, 1, 51-5, 2015.
75. Kim, S. M., et al., Role of anions in the AuCl3-doping of carbon nanotubes. Acs Nano
5, 2, 1236-42, 2011.
76. Ali, S.; Myasnichenko, V. S.; Neyts, E. C., Size-dependent strain and surface energies
of gold nanoclusters. Phys. Chem. Chem. Phys. 18, 2, 792-800, 2016.
77. Wang, W.; Ruiz, I.; Lee, I.; Zaera, F.; Ozkan, M.; Ozkan, C. S., Improved functionality of
graphene and carbon nanotube hybrid foam architecture by UV-ozone treatment.
Nanoscale 7, 16, 7045-50, 2015.
78. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.;
Casiraghi, C., Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano
Lett 12, 8, 3925-3930, 2012.
79. Xu, Z.; Ao, Z.; Chu, D.; Younis, A.; Li, C. M.; Li, S., Reversible hydrophobic to
hydrophilic transition in graphene via water splitting induced by UV irradiation. Sci Rep 4,
6450, 2014.
80. Hofmann, M.; Hsieh, Y. P.; Chang, K. W.; Tsai, H. G.; Chen, T. T., Dopant morphology as
the factor limiting graphene conductivity. Sci Rep-Uk 5, 2015.
109
81. Lara-Avila, S.; Moth-Poulsen, K.; Yakimova, R.; Bjornholm, T.; Fal'ko, V.; Tzalenchuk, A.;
Kubatkin, S., Non-volatile photochemical gating of an epitaxial graphene/polymer
heterostructure. Adv. Mater. 23, 7, 878-82, 2011.
82. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M., Polymeric systems for
controlled drug release. Chem. Rev. 99, 11, 3181-98, 1999.
83. Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W., Graphene annealing:
how clean can it be? Nano Lett. 12, 1, 414-9, 2012.
84. Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M., Electrochemistry of Graphene and
Related Materials. Chem. Rev. 114, 14, 7150-7188, 2014.
85. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The
electronic properties of graphene. Rev Mod Phys 81, 1, 109-162, 2009.
86. Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E., Graphene electrochemistry:
fundamental concepts through to prominent applications. Chem. Soc. Rev. 41, 21, 6944-
6976, 2012.
87. Kim, C. H.; Frisbie, C. D., Field Effect Modulation of Outer-Sphere Electrochemistry at
Back Gated, Ultrathin ZnO Electrodes. Journal of the American Chemical Society 138, 23,
7220-7223, 2016.
88. Ferrari, A. C., et al., Science and technology roadmap for graphene, related twodimensional
crystals, and hybrid systems. Nanoscale 7, 11, 4598-4810, 2015.
89. Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J., High responsivity and gate
tunable graphene-MoS2 hybrid phototransistor. Small 10, 11, 2300-6, 2014.
90. Yang, H., et al., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky
Barrier. Science 336, 6085, 1140-1143, 2012.
91. Toth, P. S.; Velicky, M.; Slater, T. J. A.; Worrall, S. D.; Haigh, S. J., Hydrogen evolution
and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures.
Appl Mater Today 8, 125-131, 2017.
92. Hsieh, Y.-P.; Shih, C.-H.; Chiu, Y.-J.; Hofmann, M., High-Throughput Graphene
Synthesis in Gapless Stacks. Chem Mater 28, 1, 40-43, 2016.
93. Hsieh, Y. P.; Chen, D. R.; Chiang, W. Y.; Chen, K. J.; Hofmann, M., Recrystallization of
copper at a solid interface for improved CVD graphene growth. Rsc Adv 7, 7, 3736-3740,
2017.
94. Cançado, L. G., et al., Quantifying defects in graphene via Raman spectroscopy at
different excitation energies. arXiv preprint arXiv:1105.0175 2011.
95. Bolotin, K. I., et al., Ultrahigh electron mobility in suspended graphene. Solid State
Commun 146, 9, 351-355, 2008.
96. Punckt, C.; Pope, M. A.; Liu, J.; Lin, Y. H.; Aksay, I. A., Electrochemical Performance of
Graphene as Effected by Electrode Porosity and Graphene Functionalization. Electroanal
22, 23, 2834-2841, 2010.
110
97. Wang, Y.; Kim, C. H.; Yoo, Y.; Johns, J. E.; Frisbie, C. D., Field Effect Modulation of
Heterogeneous Charge Transfer Kinetics at Back-Gated Two-Dimensional MoS2 Electrodes.
Nano Lett 17, 12, 7586-7592, 2017.
98. Chang, K. W.; Hsieh, Y. P.; Ting, C. C.; Su, Y. H.; Hofmann, M., Increasing the doping
efficiency by surface energy control for ultra-transparent graphene conductors. Sci Rep-Uk
7, 2017.
99. Samaddar, S.; Yudhistira, I.; Adam, S.; Courtois, H.; Winkelmann, C., Charge puddles in
graphene near the Dirac point. Phys Rev Lett 116, 12, 126804, 2016.
100. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically topgated
graphene transistor. Nature Nanotechnology 3, 4, 210-215, 2008.
101. Hsieh, Y. P.; Kuo, C. L.; Hofmann, M., Ultrahigh mobility in polyolefin-supported
graphene. Nanoscale 8, 3, 1327-1331, 2016.
102. Laviron, E., General expression of the linear potential sweep voltammogram in the
case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and
Interfacial Electrochemistry 101, 1, 19-28, 1979.
103. Laviron, E., General expression of the linear potential sweep voltammogram in the
case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and
Interfacial Electrochemistry 101, 1, 19-28, 1979.
104. Morozov, S. V.; Novoselov, K. S.; Geim, A. K., Electron transport in graphene. Phys-
Usp+ 51, 7, 744-748, 2008.
105. Wang, Q. H., et al., Understanding and controlling the substrate effect on graphene
electron-transfer chemistry via reactivity imprint lithography. Nat Chem 4, 9, 724-732,
2012.
106. Brownson, D. A.; Varey, S. A.; Hussain, F.; Haigh, S. J.; Banks, C. E., Electrochemical
properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale 6,
3, 1607-21, 2014.
107. Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications. 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw