進階搜尋


 
系統識別號 U0026-2612201716513500
論文名稱(中文) 奈米金屬光柵之電漿子光學研究
論文名稱(英文) Plasmonic Metallic Nano Gratings
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 106
學期 1
出版年 106
研究生(中文) 賴胤榤
研究生(英文) Yi-Chieh Lai
學號 L78021020
學位類別 博士
語文別 英文
論文頁數 77頁
口試委員 指導教授-藍永強
口試委員-蔡定平
口試委員-任貽均
口試委員-陳瑞琳
口試委員-王智明
中文關鍵字 表面電漿子  金屬光柵  阿基米德螺旋模態  史密斯-珀賽爾輻射  光聚焦 
英文關鍵字 Surface plasmon  Metallic grating  Archimedean spiral mode  Smith-Purcell radiation  Light convergent 
學科別分類
中文摘要 本論文主要是利用有限時域分析法為基礎所開發出來的軟體MEEP以及Lumerical來進行研究。我們透過模擬及理論分析來探討表面電漿子在環狀以及漸變光柵上的光學特性及應用。
首先,關於環狀金屬光柵主要是研究將奈米金屬圓柱上具有軌道角動量的螺旋模態耦合至金屬光柵上,使其軌道角動量在環狀光柵上形成阿基米德螺旋模態。不同拓樸電荷值能耦合出不同螺旋方向及不同階數的阿基米德螺旋,而三階阿基米德螺旋,因其帶有特殊的C3對稱性,固可運用於檢測含有C3對稱性的生物檢測技術上。若將環狀金屬光柵改為傳統奈米光柵上,因為其結構破壞了在θ方向上的對稱性,固在長直金屬光柵上並不會產生阿幾米德螺旋模態,但其徑向上的能量依舊能往直線方向傳播,故能利用此特性將其設計為一簡單的切換器或是圓偏振檢測系統。
接著我們探討關於史密斯-珀賽爾輻射,其原理主要是當電子束貼近的沿著金屬光柵行進時,會輻射出特定波長的電磁波。而其輻射電磁波可以與金屬薄膜表面產生的表面電漿波產生耦合,使其能量較其他輻射波長強。而在部份的研究裡,我們探討了利用介電質-金屬-介電質的結構來產生不同頻率的表面電漿波,並設計漸變的金屬光柵使得特定波段的史密斯-珀波賽爾輻射能聚焦到同一個地方。此方面的研究能應用於全像術、密碼學、光束調控以及作為特殊波段的光源。
英文摘要 In this study, the finite-difference time-domain method based software, MEEP and Lumerical, are used in simulated research. The optical properties and applications of surface plasmon (SP) on both ring and chirped metallic gratings are discussed through the result of simulation and theoretical analysis.
At first, the plasmonic Archimedean spiral modes on concentric metallic ring gratings are generated by placing the ring grating under a silver nanorod to extract the orbital angular momentum of spiral surface plasmon (SSP) mode on the nanorod and transform it into orbital motion of SP on the grating. Different topological charge of SSP can generate different type of Archimedean spiral mode. It should be noted that the proposed structure and excitation can be used to shape the near-field pattern with special symmetry. But if the SSP mode coupled onto a straight Ag grating, the θ-directional velocity of SP cannot be maintained. The spiral pattern will disappear. Although the Archimedean spiral pattern cannot be generated, it still can be used in switch or circular polarization detection devices.
Next, the generation of convergent beam by surface plasmon locked Smith-Purcell radiation (SPR) is investigated. SPR is a kind of radiation containing a frequency band when an electron bunch passing through a periodic metal grating. Recently, it has been found that SPR can be locked and enhanced at some emission wavelength and angle by excitation of SP on the metal substrate. Here an insulator-metal-insulator (IMI) substrate structure is composed of with chirped gratings on the substrate. The chirped gratings are designed such that a convergent beam containing a single wavelength is formed directly above the gratings when an electron bunch passes beneath the substrate. And the IMI structure gives another way to change the locked wavelength without change the period of grating. This work offers potential applications in the fields of optical beam steering, holography, cryptography and light source.
論文目次 Contents
論文合格證明 ........I
中文摘要 .........II
Abstract ............III
誌謝 .........V
Contents ...........VI
List of Tables ........VIII
List of Figures ........IX
Prologue .....1
Chapter 1 Introduction
1-1 Introduction of surface plasmon ..2
1-2 Drude model ....3
1-3 Introduction of SPs on Insulator-Metal geometry ..6
1-4 Insulator-metal-insulator (IMI) and metal-insulator-metal (MIM) ..9
1-5 Surface plasmon Spiral mode on metallic nanorod .....13
1-5-1 Surface plasmon mode on metallic nanorod ..13
1-5-2 Surface plasmon spiral mode ....19
1-6 Smith-Purcell radiation (SPR) .......21
1-7 Finite-Difference Time-Domain (FDTD) method .....23
1-7-1 Maxwell’s equations in Cartesian coordinates ..23
1-7-2 Yee Algorithm ..25
1-7-3 Courant condition ..28
1-7-4 Perfect matched layer (PML) ...29
1-7-5 Introduction of Meep ....32
1-7-6 Introduction of Lumerical ....32
1-8 References .........34
Chapter 2 Plasmonic Archimedean spiral modes on concentric metal ring gratings
2-1 Introduction .........38
2-2 Simulation structure and method .......39
2-3 Results and Discussion ........42
2-4 Conclusion .........50
2-5 References .........51
Chapter 3 Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation
3-1 Introduction .........55
3-2 Result ........57
3-3 Discussion .........68
3-4 Methods and Materials ........69
3-5 References .........71
Chapter 4 Conclusion and future work
4-1 Conclusion .........74
4-2 Future work .........75
4-3 Reference ...75
Publication List ........76
參考文獻 [1.1] K. –P. Chiu, and D. P. Tsai, “金屬表面電漿簡介,” 物理雙月刊 28(2), 472-485 (2006).
[1.2] M. Y. Wu, and W. C. Liu, “表面電漿子理論與模擬,” 物理雙月刊 28(2), 486-496 (2006).
[1.3] W. L. Bames, A. Dereux, and W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[1.4] P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484-588 (2009).
[1.5] J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
[1.6] E. –P. Fitrakis, T. Kamalakis, and T. Sphicopoulos, “Slow light in insulator-metal-insulator plasmonic waveguides,” J. Opt. Soc. Am. B 28(9), 2159-2164 (2011).
[1.7] S. J. Al-Bader, and M. Imtaar, “Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells,” IEEE J. Quant. Electron. 28(2), 525-533 (1992).
[1.8] A. Luis-Ramos, L. C. Gomez-Pavon, J. L. Lampallas-Cruz, A. Vargas-Trevino, and E. Marti-Panameno, “Analysis of the propagation of low dimensional optical wave,” IEEE/LEOS Summer Topical Meetings, 25-26 (2008).
[1.9] S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107, 096801 (2011).
[1.10] S. J. Smith and E. M. Purcell, “Visible Light from Localized Surface Charges”, Phys. Rev. 92, 1069 (1953).
[1.11] L. C. Sheng and V. K. Tripathi, “Stimulated coherent Smith-Purcell radiation from a metallic grating”, IEEE J. Quant. Electron. 35, 1386-1389 (1999).
[1.12] S. R. Trotz, J. H. Brownell, J. E. Walsh and G. Doucas, “Optimization of Smith-Purcell radiation at very high energies”, Phys. Rev. E 61, 7057-7064 (2000).
[1.13] S. Taga, K. Inafune and E. Sano, “Analysis of Smith-Purcell radiation in optical region”, Opt. Express 14, 16222-16229 (2007).
[1.14] G. Adamo, K. F. MacDonald, N. I. Zheludev, Y. H. Fu, D. P. Tsai and F. J. García de Abajo, “Light Well: A Tunable Free-Electron Light Source on a Chip”, Phys. Rev. Lett. 103(11), 113901 (2009).
[1.15] G. Adamo, K. F. MacDonald, Y. H. Fu, D. P. Tsai, F. J. García de Abajo and N. I. Zheludev, “Tuneable electron-beam-driven nanoscale light source”, J. Opt. 12(2), 024012 (2010).
[1.16] J. R. M. Saavedra, D. Castells-Graells, and F. J. García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays”, Phys. Rev. B 94, 035418 (2016).
[1.17] J. -K. So, F. J. García de Abajo, K. F. MacDonald and N. I. Zheludev, “Amplification of the Evanescent Field of Free Electrons”, ACS Photonics 2, 1236-1240 (2015)
[1.18] Y. –C. Lai, T. C. Kuang, B. H. Cheng, Y. –C. Lan, and D. P. Tsai, “Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation,” Sci. Rep. 7, 11096 (2017).
[1.19] D. B. Ge, Y. B. Yan, “Finite-Difference Time-Domain method for electromagnetic waves (3rd edition),” Xidian University Press (2011).
[1.20] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas. Propag. 14, 302-307 (1966).
[1.21] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical physics,” IBM Journal of Research and Development 11(2), 215-234 (1967).
[1.22] J. –P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185-200 (1994).
[1.23] W. C. Chew, and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7(13), 599-604 (1994).
[1.24] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[1.25] P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965-2974 (2009).
[1.26] P. Das, and T. K. Chini, “Spectroscopy and Imaging of Plasmonic Modes Over a Single Decahedron Gold Nanoparticle: A Combined Experimental and Numerical Study,” J. Phys. Chem. C 116(49), 25969-25976 (2012).
[1.27] P. Das, T. K. Chini, and J. Pond, “Probing Higher Order Surface Plasmon Modes on Individual Truncated Tetrahedral Gold Nanoparticle Using Cathodoluminescence Imaging and Spectroscopy Combined with FDTD Simulations,” J. Phys. Chem. C 116 (29), 15610-15619 (2012).
[2.1] L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum (IOP Publishing, 2003).
[2.2] M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[2.3] P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air core optical fibers,” Optica 2(3), 267–270 (2015).
[2.4] Y. Wang, X. Ma, M. Pu, X. Li, C. Huang, W. Pan, B. Zhao, J. Cui, and X. Luo, “Transfer of orbital angular momentum through sub-wavelength waveguides,” Opt. Express 23(3), 2857–2862 (2015).
[2.5] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[2.6] P. Genevet, N. F. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[2.7] F. Bouchard, I. D. Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, “Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges,” Appl. Phys. Lett. 105(10), 101905 (2014).
[2.8] E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[2.9] C. D. Ku, W. L. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic Archimedes spiral,” IEEE Photonics J. 5(3), 4800409 (2013).
[2.10] C. T. Ku, C. F. Chen, and C. B. Huang, “Generation of surface plasmon vortex under linearly-polarized optical excitation in a gold metasurface,” in Frontiers in Optics 2014, OSA Technical Digest (Optical Society of America, 2014), paper FTh4E.2.
[2.11] C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[2.12] W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[2.13] S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[2.14] J. I. Ziegler and R. F. Haglund, Jr., “Plasmonic response of nanoscale spirals,” Nano Lett. 10(8), 3013–3018 (2010).
[2.15] W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14(2), 547–552 (2014).
[2.16] H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10(2), 529–536 (2010).
[2.17] K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
[2.18] F. Rüting, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum,” Phys. Rev. B 86(7), 075437 (2012).
[2.19] M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[2.20] M. Pu, X. Ma, Z. Zhao, X. Li, Y. Wang, H. Gao, C. Hu, P. Gao, C. Wang, and X. Luo, “Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides,” Sci. Rep. 5, 12108 (2015).
[2.21] S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. Xu, “Chiral surface plasmon polaritons on metallic nanowires,” Phys. Rev. Lett. 107(9), 096801 (2011).
[2.22] C. M. Chen, C. K. Young, K. R. Chen, and Y. C. Lan, “Spiral surface plasmon modes on uniform and tapered metallic nanorods,” J. Opt. Soc. Am. B 30(9), 2529–2534 (2013).
[2.23] C. M. Chen, J. L. Ke, Y. C. Lan, and M. C. Chan, “Spiral surface plasmon modes inside metallic nanoholes,” Opt. Express 23(23), 29321–29330 (2015).
[2.24] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[2.25] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[2.26] R. C. Shiu, Y. C. Lan, and C. M. Chen, “Plasmonic Bloch oscillations in cylindrical metal-dielectric waveguide arrays,” Opt. Lett. 35(23), 4012–4014 (2010).
[3.1] B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron. 34, 47–87 (2010).
[3.2] H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91, 093111 (2007).
[3.3] S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[3.4] P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2005).
[3.5] S. Maier, “Plasmonics: Fundamentals and Applications (1st edition),” Springer Verlag, (2007).
[3.6] Y. Gao, J. Liu, K. Guo, Y. Gao, and S. Liu, “A side-illuminated plasmonic planar lens,” Opt. Express 22, 699-706 (2014).
[3.7] S. J. Smith, and E. M. Purcell, “Visible Light from Localized Surface Charges Moving across a Grating,” Phys. Rev. 92, 1069 (1953).
[3.8] L. C. Sheng, and V. K. Tripathi, “Stimulated Coherent Smith-Purcell Radiation from a Metallic Grating,” IEEE J. Quant. Electron. 35, 1386-1389 (1999).
[3.9] S. R. Trotz, J. H. Brownell, J. E. Walsh, and G. Doucas, “Optimization of Smith-Purcell radiation at very high energies,” Phys. Rev. E 61, 7057-7064 (2000).
[3.10] S. Taga, K. Inafune, and E. Sano, “Analysis of Smith-Purcell radiation in optical region,” Opt. Express 14, 16222–16229 (2007).
[3.11] G. Adamo, K.F. Macdonald, N. I. Zheludev, Y.H. Fu, D. P. Tsai, F. J. García de Abajo, “Light well: A tunable free-electron light source on a chip,” Phys. Rev. Lett. 103, 113901 (2009).
[3.12] G. Adamo, K. F. MacDonald, Y. H. Fu, D. P. Tsai, F. J. García de Abajo and N. I. Zheludev, “Tuneable electron-beam-driven nanoscale light source,” Journal of Optics 12, 024012 (2010).
[3.13] J. R. Saavedra, M. D. Castells-Graells, and F. J. García de Abajo, “Smith-Purcell radiation emission in aperiodic arrays,” Phys. Rev. B 94, 035418 (2016).
[3.14] Y. M. Shin, J. –K. So, K. –H. Jang, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90, 031502 (2006).
[3.15] K. Tantiwanichapan, X. Wang, A. K. Swan, and R. Paiella, “Graphene on nanoscale grating for the generation of terahertz Smith-Purcell radiation,” Appl. Phys. Lett. 105, 241102 (2014).
[3.16] X. –Z. Meng, M. –H. Wang, L. –M. Zhang, and Z. –M. Ren, “Characteristic analysis of a Smith-Purcell terahertz source,” Photon. Res. 4, 162-167 (2016).
[3.17] A. Tavousi, A. Rostami, and M. Dolatyari, “Proposal for simultaneous two-Color Smith-Purcell terahertz radiation through effective surface plasmon excitation,” IEEE J. Sel. Topics Quantum Electron. 23, 4601209 (2017).
[3.18] J. –K. So, F. J. García de Abajo, K. F. MacDonald, and N. I. Zheludev, “Amplification of the evanescent field of free electrons,” ACS Photonics 2, 1236-1240 (2015).
[3.19] W. Liu, W. Li, Z. He, and Q. Jia, “Theory of the special Smith-Purcell radiation from a rectangular grating,” AIP Adv. 5, 127135 (2015).
[3.20] F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Modern Phys. 82, 209-275 (2010).
[3.21] S. Gong, M. Hu, R. B. Zhong, X. X. Chen, P. Zhang, T. Zhao, and S. G. Liu, “Electron beam excitation of surface plasmon polaritons,” Opt. Express 22, 19252-19261 (2014).
[3.22] Lumerical Solutions, Inc.; http://www.lumerical.com/tcadproducts/fdtd/.
[3.23] P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370-4379 (1972).
[3.24] P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of Plasmonic Modes of Silver Nanoparticles Using High-Resolution Cathodoluminescence Spectroscopy,” ACS Nano 3, 2965-2974 (2009).
[4.1] Guanhai Li, Brendan P. Clarke, Jin-Kyu So, Kevin F. MacDonald and Nikolay I. Zheludev, “Holographic free-electron light source,” Nature Comm. 7, 13705 (2016).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-01-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-01-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw