進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2611201002525200
論文名稱(中文) 製程能力指標於製程品質改善之發展與應用
論文名稱(英文) Development and Application of Process Capability Index in Improvement of Process Quality
校院名稱 成功大學
系所名稱(中) 製造資訊與系統研究所碩博士班
系所名稱(英) Institue of Manufacturing Information and Systems
學年度 99
學期 1
出版年 99
研究生(中文) 王靖欣
研究生(英文) Ching-Hsin Wang
學號 p9896101
學位類別 博士
語文別 中文
論文頁數 66頁
口試委員 指導教授-王清正
共同指導教授-陳坤盛
召集委員-陳聯文
口試委員-李賢得
口試委員-利德江
口試委員-歐陽良裕
口試委員-徐世輝
口試委員-林碧川
口試委員-劉浚明
中文關鍵字 製程能力指標  六標準差  數學規劃  蒙地卡羅模擬 
英文關鍵字 process capability indices  6-sigma  mathematic programming  Monte Carlo Simulation 
學科別分類
中文摘要 面對微利時代的來臨,如何有效降低成本、縮短產品上市時間及提升產品品質是目前許多企業所關心的一項重要議題;因此,企業為了提升產業競爭力,達到永續經營目標,紛紛導入六標準差(6-Sigma)改善手法且獲得不錯的成效,而製程能力指標(Process Capability Index)為企業進行六標準差品質改善流程時常常使用的方法之一;因此,若以製程能力指標為基礎發展製程衡量、分析、改善及控制的品質模式,做為六標準差的評估方法,將可增加企業在推動六標準差品質改善選擇方法時的參考,協助相關產業提升產品的製程品質。
本文係應用製程能力指標Spk發展製程衡量、分析、改善及控制的品質模式,首先以製程能力指標Spk與製程良率為基礎,針對實際製造環境中多製程多品質特性之產品製程,發展一套整合型製程品質評估模式與產品製程能力分析圖,以解決實際製造環境中複雜製程的評估問題;接著以數學規劃方法推導製程能力指標Spk之信賴區間,做為檢定改善成效時之工具,並以蒙地卡羅模擬法(Monte Carlo Simulation)來評估其涵蓋率(coverage percentage),驗證本方法的正確性。最後,建立製程能力指標Spk管製圖作為製程品質控制工具。藉由本文所發展之製程衡量、分析、改善與控制模式,可做為企業進行六標準差品質改善時的評估方法,進而達到六標準差品質水準之目標。
英文摘要 In the face of narrow margin of profit, how to effectively reduce cost, shorten the time required for products to enter the market, and enhance product quality are current issues of concern to many corporations. To increase industrial competitiveness and reach the goal of sustainable operation, many corporations have applied the 6-Sigma improvement methods and have experienced considerably positive results. The process capability index is a method commonly employed when corporations implement the 6-Sigma quality improvement process. If the process capability index were used as the basis to develop a quality model for measurement, analysis, improvement, and control of manufacturing processes; and this model were applied as a method of evaluating 6-Sigma. This could provide reference to companies when implementing 6-Sigma quality improvement selection methods and assist related industries in enhancing the quality of manufacturing processes.

This study applied the process capability index Spk to develop a quality model for measurement, analysis, improvement, and control of the manufacturing process. First, the process capability index Spk and product yield were used as the basis to develop an integrated assessment model for process quality. An analytical graph of product process capabilities for multi-process and multi-characteristic manufacturing processes within a practical manufacturing environment. The purpose for developing these tools was to solve the evaluation problem for complicated manufacturing processes. Next, mathematical programming methods were used to derive the confidence interval from the process capability index Spk as a tool for testing improvement effectiveness. A Monte Carlo simulation was used to assess coverage percentage and verify the accuracy. Finally, a process capability index Spk control chart was used as a tool for manufacturing process quality control. The model for measurement, analysis, improvement, and control of manufacturing process developed by this study can be used as a method for evaluating 6-Sigma quality improvements and to reach the goals of 6-Sigma quality standards.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與方法 4
1.3 研究架構 5
第二章 文獻回顧 7
2.1 主要幾個應用率較高之製程能力指標 7
2.2 製程能力指標與製程良率之關係 14
2.3 製程能力指標分類 17
2.4 製程能力指標在六標準差之應用 20
第三章 應用Spk指標發展製程能力衡量與分析模式 22
3.1 產品品質指標值之訂定 23
3.2 工作單元製程能力指標值之訂定 26
3.3 產品製程能力分析圖建立 28
3.4 實例應用 34
第四章 Spk指標信賴區間做為檢定改善成效之推導 41
4.1 Spk指標信賴區間之求解 41
4.2 蒙地卡羅模擬 45
4.3 實例應用 48
第五章 建立Spk指標管製圖作為製程監控工具 53
第六章 結論 58
6.1 研究成果 58
6.2 未來研究建議 60
參考文獻 62
參考文獻 [1] Boyles, R. A., (1991) 「The Taguchi Capability Index」, Journal of Quality Technology, Vol. 23, pp. 17-26.
[2] Boyles, R. A., (1994) 「Process Capability with Asymmetric Tolerances」, Communications in Statistic: Computer & Simulation, Vol. 23, No. 3, pp. 615-643.
[3] Buck, D. L., (2002) 「Digital Design for a Self-temperature Compensating Oscillator」, IEEE International Frequency Control and PDA Exhibition, pp.615-643.
[4] Caulcutt, R., (2001) 「Why is Six Sigma so successful ?」, Journal of Applied Statistics, Vol. 28, No. 3, pp. 301-306.
[5] Chan, L. K., Cheng, S. W., and Spiring, F. A., (1991) 「A Multivariate Measure of Process Capability」, International Journal of Modeling and Simulation, Vol. 11, pp. 1-6.
[6] Chan, L. K., Cheng, S. W., and Spring, F. A., (1998) 「A new Measure of Process Capability Cpm」, Journal of Quality Technology, Vol. 20, No. 3, pp. 162-175.
[7] Charbonneau, H.C., and Webster, G. L., (1978)Industrial Quality Control, Prentice Hall, New Jwesey.
[8] Chen, J. P., and Chen, K. S., (2004) 「Comparison the Capabilities of Two Process Using Cpm」, Journal of Quality Technology, Vol. 36, No. 3, pp. 329-335.
[9] Chen, K. S., and Pearn, W. L., (1997) 「An Application of non-normal Process Capability Indices」, Quality & Reliability Engineering International, Vol. 13, pp. 355-360.
[10] Chen, K. S., (1998) 「Estimation of the Process Incapability Index」, Communications in Statistics-Theory and methods, Vol. 27, No.5, pp. 1263-1274.
[11] Chen, K. S., and Pearn, W. L., (2001a) 「Capability Indices for Processes with Asymmetric Tolerances」, Journal of The Chinese Institute of Engineers, Vol. 24, No. 5, pp.559-568.
[12] Chen, K. S., Huang, M. L., and Li, R. K., (2001b) 「Process Capability Analysis for an Entire Product」, International Journal of Production Research, Vol. 39, No. 17, pp. 4077-4087.
[13] Chen, K. S., Pearn, W. L., and Lin, P. C., (2003) 「Capability Measures for Processes with Multiple Characteristics」, Quality & Reliability Engineering International ,Vol. 19, pp. 101-110.
[14] Chen, K. S., Hsu, C. H., and Wu, C. C., (2006a) 「Process Capability Analysis for a Multi-process Product」, International Journal of Advanced Manufacturing Technology, Vol. 27, pp. 1235-1241.
[15] Chen, K. S., Wang, C. H., and Chen, H. T., (2006b) 「A MAIC approach to TFT-LCD Panel Quality Improvement」, Microelectronics Reliability, Vol. 46, pp. 1189-1198.
[16] Chen, K. S., and Huang, M. L., (2007) 「Process Capability Evaluation for the Process of Product Families」, Quality & Quantity, Vol. 41, No. 1, pp. 151-162.
[17] Chen, K. S., and Chen, W. T., (2008) 「Multi-process Capability Plot and Fuzzy Inference Evaluation」, International Journal of Production Economics, Vol. 111, No. 1, pp. 70-79.
[18] Chen, K. S., Lin, C. T., and Chen, S. C., (2008) 「Apply 6-Sigma Methodology in Constructing the Quick Response of Case Reporting System」, Total Quality Management & Business Excellence, Vol. 19, No. 3-4, pp. 381-398.
[19] Chen, K. S., Ouyang, L. Y., Hsu, C. H., and Wu, C. C., (2009) 「The Communion Bridge to Six Sigma and Process Capability Indices」, Quality & Quantity, Vol. 43, pp. 463-469.
[20] Cheng, F. T., Chen, K. S., and Sung, W. P., (2005) 「Evaluation Model for the Performance of Multi-Manufacturing Schedule」, International Journal of Advanced Manufacturing Technology, Vol. 27, No. 3-4, pp. 345-350.
[21] Choi, B. C., and Owen, D. B., (1990) Applied Multivariate Statistical Analysis 3rd ed. Prentice-Hall, New York.
[22] Chou, Y. M., and Owen, D. B., (1989) 「On the Distribution of the estimated Process Capability Indices」, Communicaton in statistic - Theory and Method, Vol. 18, No. 12, pp. 4549-4560.
[23] Clemments, J. A., (1989) 「Process Capability Calculations for non-normal Distributions」, Quality Progress,Vol. 3, pp. 95-100.
[24] Crevelling, C. M., Jeffrey, L. S., and David, A. J., (2003) Design for Six Sigma in Technology and Productn Development. Prentice Hall, New Jersey.
[25] Franklin, L. A., and Wasserman, G., (1992) 「Bootstrap Lower Confidence Limits for Capability Indices」, Journal of Quality Technology, Vol. 24, pp. 196-210.
[26] Greenwich, M., and Jahr-Schaffrath, B. L., (1995) 「A Process Incapability Index」, International Journal of Quality & Reliability Management, Vol. 12, pp.58-71.
[27] Ham, C. H., and Lee, Y. H., (2002) 「Intelligent Integrated Plant Operation System for Six Sigma」, Annual Reviews in Control, Vol. 26, pp. 27-43.
[28] Huang, C. T., Chen, K. S., and Chang, T. C., (2010) 「An Application of DMADV Methodology for Increasing the Yield Rate of Surveillance cameras」, Microelectronics Reliability, Vol. 50, No. 2, pp. 266-272.
[29] Huang, J. M., and Chen, K. S., (2004) 「An Algorithm of Performance Evaluation for Mould Development」, Production Planning and Control, Vol. 15, No. 1, pp. 55-62.
[30] Huang, M. L., Chen, K. S., and Hung, Y. H., (2002) 「Integrated Process Capability Analysis with an Application in Backlight」, Microelectronics Reliability, Vol. 42, pp. 2009-2014.
[31] Huang, M. L., and Chen, K. S., (2003) 「Process Capability Analysis for Multi-Process Product With bilateral specifications」, International Journal of Advanced Manufacturing Technology, Vol. 21, pp.801-806.
[32] Hubele, N. F., Shahriari, H., and Cheng, C. S., (1991)「A Bivariate Process Capability Vector 」, Statistical Process Control in Manufacturing , pp.299-330, Marcel Dekker, New York.
[33] Jane`s almanac, Jane`s Infantry Weapons, Jane`s information group, (2008-2009)
[34] Joseph, C. C., Ye, Li., and Ronald, Cox. A., (2009) 「Taguchi-based Six Sigma Approach to Optimize Plasma Cutting Process: an Industrial Case Study」, International Journal of Advanced Manufacturing Technology, Vol. 41, pp. 760-769.
[35] Juran, J. M., (1974) Jurans Quality Control Handbook. McGraw Hill, New York.
[36] Kane, V. E., (1986) 「Process Capability Indices」, Journal of Quality Technology, Vol. 18, No. 1, pp. 41-52 .
[37] Kevin, Linderman., Roger, G. Schroeder., Srilata, Zaheer., and Adrian, S. Choo., (2003) 「Six Sigma: a Goal-theoretic Perspective」, Journal of Operations Management, Vol. 21, pp. 193-203.
[38] Kotz, S., Pearn, W. L., and Johnson, N. L., (1993) 「Some Process Capability Indices are more reliable than one might hink」, Applied Statistics, Vol. 42, No. 1, pp. 55-62.
[39] Kunikiyo, T., Takenaka, M., Kamakura, Y., Yamaji, M., Mizuno, H., Morifuji, M., Taniguchi, K., and Hamaguchi, C., (2009) 「A Monte Carlo Simulation of Anisotropic Electron Transport in Silicon including full Band Structure and Anisotropic Impact‐ionization Model」, Journal of Applied Physics, Vol. 75, No. 1, pp. 297-312.
[40] Kushler, R. H., and Hurley, P., (1992) 「Confidence Bounds for Capability Indices」, Journal of Quality Technology, Vol. 24, pp. 188-195.
[41] Lo, W. C., Tsai, K. M., and Hsieh, C. Y., (2009) 「Six Sigma Approach to improve Surface Precision of Optical Lenses in the Injection-molding Process」, International Journal of Advanced Manufacturing Technology, Vol. 41, pp. 885-896.
[42] Lynch, D. P., Bertolino, S., and Cloutier, E., (2003) 「How to Scope DMAIC Project」, Quality Progress, Vol. 36, No. 1, pp. 37-41.
[43] Michael, L. G., (2002) Lean Six Sigma. McGraw-Hill, New York.
[44] Montgomery, D. C., (2004) Introduction to Statistical Quality Control 5th ed. John Wiley & Sons Inc, New York.
[45] Pearn, W. L., Kotz, S., and Johnson, N. L., (1992) 「Distributional and Inferential Properties of Process Capability Indices」, Journal of Quality Technology, Vol. 24, No. 4, pp. 216-231.
[46] Pearn, W. L., Kotz, S., and Johnson, N. L., (1994) 「Application of Clements,Method for Calculating Second and Rhird Generation Process capability undices for non-normal pearsonian populations」, Quality Engineering, Vol. 7, No. 1, pp.139-145.
[47] Pearn, W. L., and Chen, K. S., (1998) 「New generalization of the process capability index Cpk」 , Journal of Applied Statistics, Vol. 25, No.6, pp.801-810.
[48] Pearn, W. L., Chen, K. S., and Lin. G. H., (1999) 「A Generalization of Clements' Method for non-normal Pearsonian Processes with Asymmetric Tolerances」, International Journal of Quality & Reliability Management, Vol. 25, No.4, pp.507-521.
[49] Pearn, W. L., and Chen, K. S., (2002) 「One-sided Capability Indices Cpu and Cpl: Decision Making with Sample Information」, International Journal Quality Reliability Management, Vol. 19, No. 3, pp. 221-245.
[50] Peter, S. Pande., (2000) The Six Sigma Way. McGraw-Hill, New York.
[51] Schneider, H., Pruett, J., and Lagrange, C., (1995) 「Uses of Process Capability Indices in the Supplier Certification Process」, Quality Engineering, Vol. 8, No. 2, pp. 225-235.
[52] Shahriari, H., Hubele, N. F., and Lawrence, F. P., (1995)「A Multivariate Process Capability Vector」, Proceedings of the 4th Industrial Engineering Research Conference, Nashville, TN, pp. 303-308.
[53] Singhai, S. C., (1991) 「Multi-process Performance Analysis Chart (MPPAC) with Capability Zones」, Quality Engineering, Vol. 4, No. 1, pp. 75-81.
[54] Spiring, F. A., (1991) 「A new Measure of Process Capability」, Quality Progress, Vol. 24, No. 2, pp. 57-61.
[55] Taam, W., Subbaiah, P., and Liddy, J. W., (1993) 「A Note on multivariate Capability Indices」, Journal of Applied Statistics, Vol. 20, pp. 339-351.
[56] Taguchi, G., (1991) Introduction to Quality Engineering, Asian Productivity Organization, UNIPUB, White Plains, New York.
[57] Vännman, K., (1995) 「A Unified Approach to Capability Indices」, Statistica Sinica, Vol. 5, pp. 805-820.
[58] Veevers, A., (1995)「A Capability Index for Multiple Response」, CSIRO Mathematics and statistics Report, DMS-095, Australia.
[59] Wang, F. K., Hubele, N. F., Laweence, F. P., Miskulin, J. O., and Shariare, H., (2000)「Comparison of Three Multivariate Process Capability Indices」, Journal of Quality Technology, Vol. 32, pp. 263-275.
[60] Wright, P. A., (1998) 「The Probability Density Function of Process Capability index Cpmk」, Communicaton in statistic -Theory and Method, Vol. 27, No.7, pp. 1781- 1789.
[61] Yu, K. T., Sheu, S. H., and Chen, K. S., (2007) 「Testing Multi-characteristic Product Capability Indices」, International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 421-429.
[62] Zwick, D., (1995) 「A Hybrid Method for Fitting Distributions to Data and its use in Computing Process Capability Indices」, Quality Engineering, Vol. 7, No. 3, pp. 601-613.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-11-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw